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Abstract:

How do humans represent behaviorally-relevant 
dimensions of real-world objects? To address this 
question, we recently used a triplet odd-one-out task to 
collect >800,000 behavioral judgments on images of 
1,854 diverse basic-level object categories. To explain 
human behavior and characterize the similarity between 
pairs of objects, we developed a simple cognitive model 
that yielded sparse, interpretable perceptual and 
conceptual dimensions. To determine the utility of those 
dimensions, here we investigate two questions. First, to 
what degree can we predict those dimensions from a 
semantic embedding (Pilehvar & Collier, 2016) and 
activations in a deep convolutional neural network 
(CNN)? Second, can we use those predicted dimensions 
to reconstruct human behavioral similarity? To address 
these questions, we applied Ridge and Elastic Net 
regression to semantic embeddings and the activations 
in fully-connected layer 7 of the CNN VGG-16, 
respectively. We related the performance to two baseline 
models: The computational models alone, and a recently 
proposed method that transforms model features 
(Peterson et al., 2016). Our results demonstrate excellent 
prediction of many dimensions and strongly improved 
predictions of behavioral similarity using our model as 
compared to both baseline models. These results 
represent an important step towards both predictive and 
interpretable models of human cognitive 
representations. 
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Introduction  

Humans can categorize objects according to an almost 
infinite number of criteria, yet some dimensions of 
objects matter more for our everyday behavior than 
others. For example, a fir tree may be characterized by 
its specific shape, by being a natural object, by having 
needles, or by its utility as a Christmas tree; however, 
the use of its oil in perfumes may be seen as a less 
relevant dimension. One view, then, is that our mental 
representations of objects are determined by the 
behaviorally-relevant object dimensions (Kourtzi & 
Connor, 2011). 

A central approach for inferring these representations 
is to measure the perceived similarity of objects 
(Shepard, 1987). However, given the large number of 
existing object categories and the wide range of visual 
appearances, it is challenging to reveal principles of 
object representations that would generalize to a wider 
range of categories or object stimuli in general. 

The fields of computer vision and natural language 
processing recently have seen strong advances 
through the development of deep convolutional neural 
networks (CNNs) that rival human performance (e.g. 
Simonyan & Zisserman, 2015), and the development of 
semantic embeddings such as word2vec (Mikolov et al., 
2013) that yield strongly improved performance over 



previous methods in extracting feature vector 
representations for words from documents. Both of 
these methods produce representations of objects, 
when given as input an image or a word naming the 
object. They may, therefore, contain enough 
information to allow the prediction of human perceived 
similarity. 

Recently, Peterson et al. (2016) demonstrated that, 
after simple reweighting, the similarity of object 
representations within CNNs exhibits a strong 
correspondence to perceived similarity within several 
object categories (e.g. animals), although with limited 
generalization between categories. For semantic 
embeddings, much less is known about their 
relationship between object representations and 
behavioral similarity, although direct correlations have 
revealed only a weak correspondence (Bankson et al., 
2018). 

Given that humans may base their similarity ratings 
on the behaviorally-relevant dimensions of objects, one 
approach to predicting behavioral similarity might be to 
first use CNNs and semantic embeddings to predict the 
dimensions that those similarity ratings are based on, 
and then to reconstruct behavioral similarity from those 
dimensions. 

The goal of the present work is twofold. First, we aim 
at verifying the utility of a set of sparse, interpretable 
dimensions extracted from a large number of behavioral 
similarity ratings across 1,854 object categories, by 
predicting them from CNNs and semantic embeddings. 
Second, we aim at testing the usefulness of CNNs and 
semantic embeddings in predicting human behavioral 
similarity for a wide range of object categories, with the 
goal of offering a model that can be used to accurately 
predict behavioral similarity for a wide range of object 
categories. 

Methods 
Behavioral responses were collected for images of 
1,854 basic-level object categories, with one 
representative image per category. These basic-level 
objects were selected to be representative of the 
English language (for details, see Dickter et al., 2018). 
dimensions. 

We used Amazon Mechanical Turk to collect 831,960 
trials of a triplet odd-one-out task, in which three object 
images are presented side-by-side and a worker has to 
choose which object is the most dissimilar. This task 
measures the perceived similarity of those objects, but 
has the advantage of providing bias-free responses and 
allows measuring similarity across a wide range of 
contexts imposed by the other objects in the triplet. 

Since it was not possible to collect all similarity ratings 
across all contexts (> 100 billion combinations), we 
developed a simple cognitive model based on sparse 
positive embeddings that is optimized for predicting 
behavioral choices while concurrently providing 
similarity ratings and extracting the behavioral similarity 
of objects. This approach provided us with a set of 36 
interpretable perceptual and conceptual object 
dimensions. 

In the next step, we sought to test to what degree we 
can predict those dimensions from semantic 
embeddings and activations in a CNN. As a semantic 
embedding, we chose a sense representation based on 
de-conflated word representations (Pilehvar & Collier, 
2016), which provides more interpretable dimensions 
for each object by using the semantic structure provided 
through synsets in WordNet (Fellbaum, 1998). Sense 
vectors were available for 1,796 object categories. As a 
CNN, we chose the fully-connected layer 7 in VGG-16 
(Simonyan & Zisserman, 2015), which has previously 
been shown to provide good correspondence to 
behavioral similarity (Peterson et al., 2016). The sense 
vectors had 300 dimensions, while the CNN layer had 
4,096 dimensions. 

The predictions of the 36 dimensions based on the 
sense vectors were carried out using Ridge regression, 
while the predictions based on CNN activations were 
carried out using Elastic Net regression. We used 10-
fold cross-validation for predictions, and nested 10-fold 
cross-validation for selection of hyperparameters (for 
Ridge regression: lambda, for Elastic Net regression: 
lambda and alpha). 

In the next step, we calculated a large-scale similarity 
matrix by computing the dot product of those 36 
predicted dimensions and compared them to the true 
behavioral similarity. 

Finally, as a baseline, we calculated large-scale 
similarity matrices based only on the sense vectors and 
the activations in CNN layer 7. In addition, we compared 
our results to a previously published method (Peterson 
et al., 2016), which computes a weight for each of the 
features in a model that determines the similarity.  

Results 
Using sense vectors and CNN layer 7, many of the 36 
dimensions were predicted highly accurately (sense 
vectors: max R2: 0.85, median R2: 0.38; CNN layer 7: 
max R2: 0.72, median R2: 0.39). This demonstrates that 
representations in semantic embeddings and CNNs 
carry information highly predictive of many of these 
dimensions, demonstrating the usefulness of those 
computational models for predicting behaviorally-
relevant dimensions. In addition, the results suggest 



that the dimensions extracted from our cognitive model 
are useful for characterizing components of behavioral 
similarity. 

The predicted behavioral similarity yielded a similar 
pattern of results. Behavioral similarity predicted from 
sense vectors accounted for 57.9% of the variance, 
while behavioral similarity predicted from CNN layer 7 
explained 49.1%. In contrast, the baseline model based 
on the sense vectors and CNN layer 7 alone accounted 
for 26.7% and 18.6% of the variance, while the baseline 
model based on simple transformations accounted for 
43.3% and 41.0%, respectively. 

Discussion and Conclusion 
Our results demonstrate that it is possible to predict 
many dimensions of a cognitive model used to 
characterize behavioral similarity ratings. Since these 
dimensions are well-predicted and interpretable, this 
result opens the avenue for interpretable information 
about the nature of the representations in semantic 
embeddings and CNNs and how they relate to human 
behavior. 

Further, the fact that more than half of the variance of 
behavioral similarity ratings for a very wide range of 
object categories can be predicted from semantic 
embeddings and CNNs may represent an important 
step towards a generative model of behavioral 
similarity. 

Previous work using a smaller set of object categories 
has demonstrated higher prediction accuracy using 
simple transformations of model features (Peterson et 
al., 2016), while using the same method in the present 
study turned out to predict not as well. However, many 
of those predictions were done within category, and the 
previous study left open whether those results would 
generalize to the much larger range of categories used 
in the present experiment. Alternatively, due to the 
partial sampling of the matrix it is possible that the 
estimation of behavioral similarity, and therefore the 
prediction of behavioral similarity from computational 
models, can still be improved. We will address this 
question by improving the sampling of the behavioral 
similarity matrix. 

Finally, another avenue for future work is to combine 
multiple computational models and test whether they 
can jointly explain more variance than any model alone. 

Together, using a simple cognitive model of 
behavioral similarity, the results shed light on the utility 
of computational models for predicting behavioral 
similarity and open an avenue for the use of 
interpretable dimensions to reveal the structure of 
human cognitive representations. 
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