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Abstract
A major challenge in neuroscience is to develop mod-
els that bridge between observed neural firing patterns
and computational functions. Here, we demonstrate
the utility of Vector Symbolic Architecture (VSA)
models in building a theory framework for neuro-
science. Specifically, we present a VSA model express-
ing computations by operations on high-dimensional
vectors of complex numbers, Fourier Holographic Re-
duced Representations (FHRR). We have developed
a novel model of synaptic integration to implement
FHRR operations with spiking neurons that express
periodic population firing, where the timing of a spike
relative to an internal oscillation represents the phase
of a complex number. We illustrate how algorithms
defined on a computational level, such as associative
memory or spatial navigation, can be implemented by
spiking neurons that exhibit similar firing patterns as
observed in neural recordings. Thus, FHRR VSAs
can establish a link between concrete computations
and properties of neural firing such as oscillations and
phase precession in hippocampus and cortex.
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Introduction
The goal of a theory framework for understanding brain
recordings is the inference of principles of computation and
brain function from complex, high-dimensional data. One
approach has been to postulate a computation, build a
“normative” network model that performs exactly this com-
putation, and compare model predictions to experimental
observations. This approach has led to the identification of
specific types of computations in early sensory processing,
e.g. contrast invariant feature detection (Troyer et al., 1998)
and efficient coding (Olshausen Field, 1996; Rehn Sommer,
2007). However, most areas of cortex and hippocampus
likely subserve multiple computational operations, leading
to a combinatorial explosion of normative models.
We aim to develop a theory framework for neural com-

putation that is modular and general enough to describe
computations in different brain regions, e.g. hippocampus
and visual cortex. To describe putative computations that
underlie behavior, we will begin with models that have been

proposed in the connectionist literature to understand cog-
nitive functions (Plate, 1995; Kanerva, 1996; Plate, 2003;
Gayler, 2004), often referred to as vector symbolic archi-
tectures (VSA). In these models, symbols or concepts are
represented by pseudo-randomized high-dimensional vectors
and the computations underlying cognitive reasoning are
modeled by algebraic operations in the vector space (Kan-
erva, 2009). Different VSA models have been proposed
using different vector spaces —binary, real or complex—
and different operations. VSA models have in common
that they include a few elementary operations that, when
appropriately composed, can solve even challenging cogni-
tive problems (Gayler, 2004). Typically, these operations
include a binding operation to form data structures, such
as key-value pairs, a superposition operation to represent
sets of items, and a “scrambling” operation, such as a per-
mutation. VSA models are also able to describe challenging
problems of sensory-level processing, such as invariant object
recognition (Eliasmith et al., 2012).
The idea that the brain uses pseudo-random activity

for indexing structured computations seems far fetched at
first. However, it is consistent with observations of appar-
ent randomness in neural recordings, and some theories
for hippocampus and cortex (Teylor and DiScenna 1986;
Hawkins et al., 2017). Further, our recent work (Frady et al.,
2018) has demonstrated how the structured representation
of time series data formed in different types of VSA models
is naturally implemented by recurrent networks with random
weights, akin to those considered in reservoir computing
(Lukoševičius Jaeger, 2009). Also, the feasibility of imple-
menting cognitive computations with (a particular) VSA by
rate codes in spiking neurons has been shown (Eliasmith et
al., 2012).
Here, we use VSA as a flexible and modular two-level

theory framework to describe neural computation. The first
level uses a generic VSA formalism to define the putative
computation underlying a behavior under study. The second
level of the framework describes how the computational
elements are implemented by spiking activity patterns and
the structure of neural circuits. We demonstrate the utility
of VSA models in a neuroscience theory framework by de-
veloping models for visual processing and memory (visual
cortex), and navigation (hippocampus). Specifically, we
will describe advances using a VSA model based on the



algebra of vectors of complex numbers, Fourier Holographic
Reduced Representations (FHRR: Plate, 2003).
In FHRR, base symbols are represented by high-

dimensional vectors of complex numbers with unit mag-
nitude. We have developed a novel model of synaptic
integration to implement FHRR with spiking integrate-and-
fire neurons that express periodic population firing. In this
model, the timing of spikes represents the relative phases
of complex numbers. This makes FHRR useful for under-
standing phase coding in hippocampus and visual cortex.
We demonstrate how the model of synaptic integration can
be used to build a stable spiking complex Hopfield network
(Jankowski et al. 1996) that can store arbitrary spiking
phase patterns as attractor states, generates internal oscilla-
tions with no external clock, and that can recall information
as a content-addressable memory with pattern completion.
Finally, we show how applying sparsity to the FHRR vectors
can produce a representation of two-dimensional space at
the computational level, while also matching several ob-
served phenomenon in the hippocampus at the mechanistic
level, such as place fields and phase-precession.

Results
A circuit model for memorizing sensory inputs
Here we present a theory and model for spike-timing repre-
sentations that follows the algebra of Fourier Holographic
Reduced Representations (FHRR; Plate (5)). In this frame-
work, symbols are represented by high-dimensional vectors
(hypervectors) of complex numbers with random phase and
unit magnitude. The transmission of complex numbers from
one layer to another, or from time-step to time-step, can be
related to the timing of action-potentials relative to an on-
going circuit oscillation or rhythm. This mechanism relates
to many observations in the nervous system, for instance,
in the hippocampal system it is well known that spiking is
synchronized with the theta-rhythm and information can be
encoded by the spiking relative to the phase of the oscillation
(2).

The neurons in this model express periodic population
firing, where the timing of a spike relative to an internal
oscillation represents the phase of a complex number. The
proposed synaptic dynamics transforms a presynaptic spike
into an excitation/inhibition-balanced postsynaptic current
oscillation. The timing of presynaptic spike and synaptic
delay determines the phase of the postsynaptic current
oscillation. The oscillatory currents from many synapses will
sum in the neuron, in essence implementing a dot product
between complex vectors. The effect of spikes depends now
on their relative timing and stored synaptic patterns — it
can be small in the decoherent case (Fig. 1A), or large in
the coherent case (Fig. 1B).

We demonstrate the theory and mechanisms in a working
model of a spiking complex Hopfield attractor network that
can store and retrieve arbitrary phase patterns (Fig. 1C) as
well as images encoded as FHRR hypervector symbols (Fig.

1D, E). The complex Hopfield network simply extends from
the traditional Hopfield network (4). The outer-product
learning rule is replaced with the conjugate outer-product
learning rule. The neural non-linearity is changed to nor-
malization to unit magnitude for complex numbers (3).
At the computational-level, the model we present is a

network of three layers, an encoding layer, the Hopfield layer,
and a decoding layer. The encoding layer, x(T )∈RD, repre-
sents the inputs and is used to initialize the Hopfield network
through the encoding matrix X ∈ CN×D, where D is the
dimensionality of the input and N is the number of neurons
in the Hopfield layer. The Hopfield layer, h(T ) ∈ CN , iter-
ates through time with recurrent matrix W ∈ CN×N and
the complex magnitude |hi(T )| renormalized to unity each
time step by the non-linear function, Θ. The decode layer
y(T ) ∈ RD resolves the state of the complex Hopfield net-
work with decode matrix Y ∈ CN×D. This gives a network
described by these update equations:

h(T ) = Θ(Wh(T −1) +Xx(T ))

y(T ) = <
(
Y>h(T )

) (1)

Any phase pattern (vector of complex numbers with unit
magnitude) can be stored in the complex Hopfield network
using the conjugate outer-product rule, W = SS∗>, where
S ∈ CN×M is the matrix of phase patterns or of FHRR
vector-symbols, and M is the number of patterns to store.
Other arbitrary input patterns, such as RGB images, given
by matrix P ∈ RM×D can be stored in the network by
associating each image pattern with a FHRR vector-symbol
in the encoding and decoding matrices (1). However, the
input patterns to be stored may have correlations. This
can be resolved by storing the decorrelated patterns in
the encoding matrix. Using singular value decomposition,
P = UΣV, the encoding and decoding matrices are:

X = SUV
Y = S∗P

(2)

At the mechanistic level, these equations are imple-
mented by spiking integrate-and-fire neurons. The exci-
tatory synapses have a tunable magnitude and delay, which
are set by the magnitude and phase of the complex numbers
in the matrices W, X and Y. A population of inhibitory
neurons provides the inhibition to create a balanced os-
cillatory current. The oscillatory current is self-generated,
and no external clock is needed, but the frequency of the
oscillation is arbitrarily set to 5 Hz. This frequency relates
the phases of the complex numbers to delays. The neurons
have a refractory period half the cycle time, which prevents
the neurons from firing more than once per cycle. This acts
as the neural non-linearity that renormalizes the complex
numbers to unit magnitude. The Hopfield dynamics drives
the system into a stable oscillation that can be used to store
and recall information.



Figure 1: Memory network with phase-precession coding. A, B. The effect of a presynaptic spike train (Row 1; red x’s:
inhibitory neuron spikes) depends on synapse phase patterns (Row 2) impinging on a target neuron. The current into a
postsynaptic neuron (Row 3) can be rather small (A, decoherent) or quite large (B, coherent). C. Several linear phase
patterns are stored in a spiking Hopfield attractor, and the network is initialized randomly. After a short time it converges
to a stored attractor state. D. E. Several images are stored in the spiking Hopfield attractor, and the network is initialized
to a mixture of 3 of the images. After a few iterations, the network converges to the most strongly initialized stored pattern.
Spiking patterns (D) and readout of spiking patterns (E).

A model of place representation in hippocampus

We next demonstrate how the computations in the FHRR
model can be implemented in spiking neurons to produce
neural response activity similar to CA1 principal neurons,
exhibiting place fields and phase-precession. Some properties
of the FHRR model described above can be modified to
better match neuroscience mechanisms without losing the
connection to the computational theory. In essence, we
manipulate sparsity and the binding mechanism in the FHRR
model to form unique neural codes of 2-D locations in
different environments (Teylor and DiScenna 1986) as well
as mimic observed physiology. This type of representation
is interesting because sparse firing is a prominent feature of
biological neurons and is naturally able to represent latent
representations in sparse coding models (Olshausen Field,
1996; Rehn Sommer, 2007).

Representations in the FHRR model typically are vectors
of unit complex numbers with random phases as the basic
set of symbols, but this translates to every neuron firing once
each cycle of the oscillation. Our work (Frady et al. 2018)
showed that rate modulation can be applied to the basic
set of vector-symbols without detriment to the capacity. By
including rate modulation, we can model both place-fields
and phase-precession within the activity of the neurons, as
observed in neuroscience (Buzsaki, 2006).

Sparsity enables the modeling of both place-fields and
phase-precession within the activity of the neurons as follows.
If x and y are continuous values representing the position
of a mouse in a 2D arena, one can form unique location
keys using the powers of some base vectors X and Y.
The base vectors can be designed to capture the rate of
phase-precession and the size of place fields, as well as
preserve the sparsity of the neural code. In FHRR, circular
convolution implements the binding operation: ~. The joint
key uniquely representing a particular location in a particular
environment can then be formed by: K~X~x ~Y~y,
where K is a sparse random vector representing an index for
the environment/context. 1

The network of spiking neurons with the synaptic prop-
erties described above can be used to represent the FHRR
vector K~X~x ~Y~y. We demonstrate how such a net-
work encodes the position of a mouse exploring a 2-D box
on a particular trajectory (Fig. 5A). The resulting spike
responses of the network are shown in (Fig. 5B), in which
both place-field responses and phase-precession are present
(Fig. 5C). Another population of readout neurons with the
same synaptic dynamics described above can decode the

1The expression X~x describes circular convolution expo-
nentiation, i.e. X~3 = X~X~X. This is well-defined for
continuous values in the exponent.



Figure 2: Place representations using phase precession neural coding model. A. The position of a mouse over time. B.
Model spiking activity encoding position. The theta rhythm is depicted as the green trace at the bottom. Spikes are
colored based on phase relative to theta oscillation (inset). C. Spikes of individual neuron phase-precess while mouse moves
through a place field. The rate modulations and phase-precession reproduce characteristics of CA1 place cells. D. Position
decoded from spiking activity (dashed line) compared to real position (solid line).

neural activity (Fig. 5D).

Discussion
The two-level theory framework described here can serve to
link computation with neural mechanisms in a modular and
flexible manner. This allows theorists to postulate compu-
tations in a generic VSA formalism and create models that
can be compared to neuroscience data. The novel model
of spike-timing and synaptic integration highlights a new
way to understand and utilize neural oscillations and phase-
precession for computation. This will serve to enhance our
understanding of oscillatory neural computation observed in
the nervous system. Further, our framework can serve as a
new way to design algorithms for distributed computation,
such as on emerging devices from neuromorphic computing
(Davies et al. 2017).
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