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 Summary 
 Whether negotiating social spaces, solving puzzles, or planning research, humans reason and learn in 
complex environments with many actions and states. From learning social hierarchies to planning a foraging 
route, nonhuman primates face similar problem spaces with many actions and states. Here, we report on 
monkeys playing a simplified version of the game Battleship, designed to investigate learning these complex 
environments. Monkeys visually uncovered one shape per trial over multiple choices. Each shape occurred at a 
specific location, but shapes could overlap. Choices could be made in any order and revealed either a piece of 
the colored target or a white background. Trials ended once the shape was fully uncovered. 
 We focus on three questions: were monkeys able to perform this task?; what were monkeys learning 
during this task (e.g., shapes or movement sequences)?; and what computations were monkeys using to learn? 
First, monkeys were adept learners, as assessed against the optimal choice that maximized expected reward at 
each choice in a trial (average number of trials to 75% optimal choices = 511 ± 117 trials, n = 7 shape sets). 
Second, monkeys used different patterns to reveal the shape across learning, indicating that the shapes, and 
not movement sequences, were learned. Third, while initial model fits to the behavior show that starting 
information bonus models fit better than basic e-greedy reinforcement learning or gradient search models (AIC; 

aice-greedy = 6.18 x 103; aicstart = 1.96 x 103; aicgradient = 8.48 x 
103), simulated agents using these choice strategies were 
unable to learn the shapes (average number of choices to 
learn > 20,000 trials). We predict that further behavioral 
modelling will show that shape information, computed as the 
difference between shape entropy and the entropy of merely 
finding a shape piece, a variant of the Kullback-Leibler 
divergence, helped drive choice behavior.  
 
 Additional Detail 

Monkeys learned the locations of shapes on a grid over 
the course of many trials (Fig. 1). On each trial, monkeys made 
a series of oculomotor decisions to reveal a single shape. 
Monkeys could explore, only registering a choice upon fixating 
a target for a variable fixation time (250-500 ms). Trials ended 
once the full shape had been revealed. Small rewards were 
delivered for each piece of shape uncovered, and a large 
reward inversely proportional to the total number of choices 

needed to finish revealing a shape was delivered at the end of the trial. Each particular shape always appeared 
at the same location, with different locations for different shapes, and the shapes could partially overlap. Shape 
color varied randomly from trial to trial, and different shapes were randomly interleaved. 

A sample shape set for a 5x5 grid is depicted in Fig. 2A. This design results in a value map that gradually 
changes over time as the monkey uncovers pieces of the shape; Fig. 2B depicts the state of the value map at the 
start of a trial (warmer colors = greater expected reward). At each time point, the value map defines the set of 
optimal choices, so performance can be assessed across choices and trials. Monkeys were proficient at learning 
this particular shape set (Fig. 2C), achieving approximately 80% optimal choices, defined as choosing one of the 
grid squares with the highest expected value on the value map given what’s been revealed so far. 
 The learning curve for a particular ‘H’ shape is depicted in Fig. 2D. Using a changepoint detection test, 
which evaluates the log-odds ratio of a changepoint in a time-series (Gallistel, Fairhurst, and Balsam), on the 

Figure 1. Battleship  
learning task. Monkeys fixated a  
central cross, maintaining fixation as targets 
appeared (small white squares). Once 
fixation extinguished (go cue), monkeys 
were free to choose any of the available 
targets. To register a choice, fixation was 
maintained on a target. The chosen grid 
square was then revealed, displaying either 
a part of a shape (red) or nothing (white). 
After a free look period, the fixation cross 
reappeared and the revealed grid squares 
stayed on the screen. 
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cumulative number of choices to fully reveal the ‘H’ shape, the monkey learned the shape after only 34 trials 
(red circle, Fig. 2D). However, even after this trial, changes in the variance of the number of choices to reveal 
the shape remained (note changes in the deviation from the mean in the learning curve plotted in Fig. 2D).  

Using the changepoint detection test on the variance (Inclan and Tiao), six learning intervals were 
uncovered between variance changepoints (Fig. 2E), indicating that even after learning the shape, the monkey 
continued to refine its choice behavior. Each trial was then coded by the pattern used to uncover the shape, 
counting from the first piece of the uncovered shape. Plotting the frequency of each unique pattern used to 
uncover the shape in each variance interval separately revealed that the monkey used a unique pattern for each 
successful trial in the two intervals before learning as well as the first interval after (Fig. 2F, top three panels). 
Only in later intervals did a preferred movement pattern begin to emerge, as revealed by peaks in the 
distribution of pattern frequency, but even in those 
intervals there was still residual variability in the patterns 
used (Fig. 2F, bottom three panels).  

The conclusion that shapes and not movement 
sequences were learned was further supported by 
analyzing the Levinshtein distance between patterns, a 
measure of pattern similarity, which showed much less 
similarity between patterns at the beginning of learning 
and much more by the end (Fig. 2G). Response time 
analysis suggests that monkeys may have been begun to 
settle on a particular movement sequence as learning 
proceeded. Choices were categorized as single-step, 
when the monkey made a single saccade to register a 
choice during a trial, or multi-step, when the monkey 
made a number of saccades before choosing. 
Examination of single-step response times in the first 
quintile of trials compared to the last quintile revealed 
increasing linearization in the time for each successive 
response over the course of learning (Fig. 2H), consistent 
with past findings that each next step in an eye 
movement sequence takes longer to execute (Zingale 
and Kowler). 

Modeling of choices behavior on this task 
revealed that more traditional reinforcement learning 
algorithms are miserable at learning the shapes. Initial 
model fits to the behavior show that a starting information bonus model, which artificially adds a small value to 
all grid squares at the beginning of learning, fit better than a basic e-greedy reinforcement learning model 
(Sutton and Barto) or a gradient search model, which adds a small value bonus to grid squares adjacent to 
squares with pieces of shapes (AIC; aice-greedy = 6.18 x 103; aicstart = 1.96 x 103; aicgradient = 8.48 x 103). However, 
simulated agents using these choice strategies were unable to learn the shapes (models failed to converge after 
20,000 trials), presumably because these algorithms represent the state space at the finest grain (3 states 
(revealed, piece of shape; revealed, no shape piece; unrevealed) for a 5x5 grid is 325 = 847,288,609,443 states), 
requiring an enormous number of samples to learn to navigate the space. We predict that further behavioral 
modelling will show the influence of shape information throughout shape learning. In particular, we predict that 
either the difference between the entropy of getting a particular piece of a shape given a location and the 
entropy of getting a piece of a shape given a location and a shape, which includes shape information and is a 
variant of the Kullback-Leibler divergence (Johnson et al.), or that the entropy over different patterns of 
evidence which monkeys will track, a form of infotaxis (Vergassola, Villermaux, and Shraiman), will drive learning 
during the task. 
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Figure 2. Data from sample shape set on a 5x5 
grid with five shapes. See text for details. G, H: 
error bars occluded by data points. 
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