
Approximate inference explains paradoxical data in two-event causal inference
task

Sabyasachi Shivkumar1,?, Madeline Cappelloni2

Ross Maddox2,3, Ralf M. Haefner1,?

1 Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
2 Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA

3 Neuroscience, University of Rochester, Rochester, NY 14627, USA
? {sshivkum,rhaefne2}@ur.rochester.edu

Summary

The brain combines noisy and incomplete signals from
multiple sources according to their reliability to infer the
state of the outside world. The brain’s implementation
of this process of “probabilistic inference” is necessar-
ily approximate. Here, we present theoretical insights
and experimental results from a new causal integration
task involving two auditory and two visual cues. While
the auditory cues contain information about the correct
choice, the visual cues do not. Despite the fact that the
performance of an ideal observer does not depend on
the location of the visual cues, human subjects’ perfor-
mance does. We show that this improvement can be ex-
plained by a model based on approximate inference (in
our case sampling). Furthermore, we are able to quan-
tify the “accuracy” of a subject’s approximation using
psychophysical data, something that is hard in simpler
tasks in which sensor noise and inference noise affect
behavior similarly. More generally, our task and model
allow us to dissociate the three principal sources of sub-
optimality in perceptual decision-making tasks: sensor
noise (e.g. in photo receptors), model mismatch (mis-
taken assumptions about the structure of the world), and
approximate inference. Depending on this partitioning,
our model makes subject-specific predictions for how be-
havioral performance should scale with stimulus dura-
tion.
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Introduction

The brain combines inputs from multiple senses to infer in-
formation about events in the outside world. The fact that it
appears to do so flexibly, depending on the uncertainty asso-
ciated with the respective sensory streams, is a central argu-
ment in favor of the ‘Bayesian brain’ hypothesis (Ernst & Banks
2002, Pouget et al. 2013). However, before it can combine dif-
ferent inputs, the brain has to decide whether two signals were
actually due to a single event in the outside world or not – a
process modeled as ‘causal inference’ (Kording et al. 2008,
Acerbi & Ma 2017). Under natural conditions, the brain has to
perform causal inference involving multiple cues associated
with many potentials causes. While previous studies concen-
trated on only one or two potential cause, our study extends

this work to multiple causes and cues – both experimentally
and theoretically.

Task (Figure 1B)
Two brief (200ms) auditory stimuli, a pure tone and noise,
are presented at equal eccentricity on opposite sides of the
midline. The subject’s task consist in reporting the side on
which the tone appeared. Temporally paired with the auditory
stimuli, random visual shapes are presented on the screen.
The central comparison in our work is between two conditions
called “matched” and “central”. In the central condition the
visual shapes are presented on the midline, in the center of
the screen. In the matched condition, the visual shapes are
presented at the same locations as the auditory signals. Im-
portantly, the visual cues are random and not paired in any
way with tone and noise and hence contain no information
about the correct choice (left/right). (While the visual cues do
contain information about the eccentricity at which the audi-
tory tones are presented, the ideal observer does not benefit
from them as shown below.)

Model (Figure 1A)
Generative model: We extended the single event causal
inference model in Koerding et al. (2008) to the multiple
cues and possible bindings in our task. The model assumes
Gaussian noise where the subjects infer that the observa-
tion Xi could be generated from a location Si with a variance
σi where i ∈ a− tone,a−noise,v− le f t,v− right where a-
tone,a-noise,v-left,v-right stand for audio tone, audio noise,
visual cue on the left and visual cue on the right respectively.
εa and εv correspond to the experimenter-chosen locations of
tone and visual stimuli. C ∈ {0,1} represents the brain’s belief
about the correct causal structure, and R ∈ {0,1} the correct
choice.

Exact inference: From the brain’s perspective, performing
the task here means computing the posterior over the location
given its noisy sensory observations and reporting whether
p(R = left|...) was larger or smaller than p(R = right|...).
First, we derived an analytical expression for the posteriors
over tone location, and over the correct choice (not shown
here). We found that while this posterior depended on the
location of the visual cues, this dependence never changed
the optimal choice from the subject’s perspective. Whenever



the posterior over tone location had more mass on the left
of the midline than on the right of the midline, and whenever
the posterior over correct choice being left was larger than the
posterior over the correct choice being right, it stayed that way
no matter the location of the visual cues. In other words, the
behavior of an ideal observer who follows the optimal strategy
of choosing the side with more posterior mass is unaffected
by the visual cues, and hence the same for the central and
the matched condition. What does change with visual cue lo-
cation, however, was how much more mass was on the left
compared to on the right (or vice versa). Figure 1C illustrates
this finding by plotting the logarithm of the ratio of the poste-
rior mass on the correct side compared to the incorrect side
(aka the “log odds”) for one particular eccentricity comparing
central and matched condition.

Approximate inference: Due to the intractable nature of the
inference problems that the brain is faced with under natural
conditions, its inferences are necessarily approximate. Devi-
ations from exact inference (ideal observer) come in two prin-
cipal class: (1) approximate representations and inference al-
gorithms, and (2) model mismatch (Ma 2012).

(1) means that on any one trial, the brain only has access to
an estimate of the posterior ratio based on its approximation
to the posterior. As a result, performance will be decreased
compared to an ideal observer who performs exact inference,
with no “inference error” on its ratio estimate. (This does not
mean that the ideal observer is perfect since it still bases its
decision on noisy observations and hence its posterior is vari-
able with more mass on the wrong side for some trials.) Fur-
thermore, how likely this inference error will be in changing
the ratio from above 1 to below 1 (the only case in which be-
havioral choice will be altered), will depend on the ratio itself.
The further away the ratio from 1, the more likely the behav-
ioral choice will correspond to the side with the larger mass.
What we found in our model (and can show analytically for
a simplified, forced-integration) model, is that whenever the
noisy evidence implied a ratio > 1 for the central condition, it
would imply an even larger ratio in the matched condition, and
whenever it implied a ratio < 1 in the central condition, it would
imply an even smaller ratio in the matched condition. This dif-
ference between the conditions has no effect for the ideal ob-
server for which only bigger/smaller than 1 matters, but it has
the effect that approximate inference performance is higher in
the matched condition since the inference error is less likely
to change the choice. This effect is illustrated in Figure 1C,
and its presence in the experimental data is what allows us
to constrain how close the approximation of the brain’s poste-
rior is to the exact solution – independently from the amount
of sensory noise with which it is usually confounded. One of
the proposed approximation schemes that the brain may be
employing is based on sampling (Fiser et al. 2010), and here
we use the number of samples, ns, as a measure for how ac-
curate the brain’s posterior is. Importantly, our data collected

from 20 human subjects in this task allowed us to constrain ns
to relatively small values (most posterior mass over ns given
the data lies over 1-10 samples for most subjects – see Figure
1F for an example subject).

(2) means that the brain’s assumed model of the input sig-
nals, and correct choices deviates from the experimenter’s val-
ues. The largest deviation displayed by our subjects is a bias
for one or the other choice. Interestingly, even in this case,
performance is higher in the matched compared to the central
condition. The intuitive reason for this is that integrating the
visual cues with the auditory ones, increases the brain’s confi-
dence about its sensory inputs (see case (1)), and hence de-
creases the relative influence of a bias in the prior belief about
the correct choice. Importantly, this benefit of the visual cues
is present even for the ideal observer, depending primarily on
how much less noisy the visual information is compared to the
auditory information, independent of ns, helping to dissociate
between those sources of errors (see Figure 1E).

Model fitting Using Gibbs-sampling in the generative model
of the data, we have inferred the joint posterior over all the
parameters in our model. The parameters in our model fall into
three categories: (a) variabilities of the sensory inputs (noise),
(b) prior parameters reflecting the statistics of the task, and (c)
the accuracy of the posterior representation, ns. The marginal
distribution over any one parameter then yields our posterior
belief about that parameter given the empirical data.

Subject-specific predictions: While our empirical data
was recorded for only the two conditions described above, our
model together with the inferred posterior over all parameters
allows us to make subject-specific predictions for behavioral
performance for any combination of visual and auditory ec-
centricity. Finally, at least under the assumption of a sampling-
based representation, we can make subject-specific predic-
tions on how the difference in performance between the cen-
tral and the match condition should scale with stimulus dura-
tion: The inference noise should decrease with duration which
presumably is proportional to the number of samples the brain
can use (with an effect predicted by our model). In contrast,
any improvement due to a subject bias should not scale in the
same way as it is independent of the number of samples.
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Figure 1: A) Generative model of the task. B) Illustration of display during task. C) Comparison of logarithm of posterior mass
ratio (log odds) for central and matched conditions. Lines connect ratios for equal inputs, X . The log ratio always lies on the
same side of 0 for both conditions. This means that the ideal observer would make the same choice in both conditions. Violin
plots indicate the distribution of log odds due to variability (noise) in the actually observed signal on each trial. The relative mass
in each violin below the x-axis is the same for both conditions. D) Log odds as a function of eccentricity. E) Psychometric curves
in the absence (top row) and the presence (bottom row) of a choice bias. Left column corresponds to 1 sample (ns = 1), 10
samples, and infinitely many samples (exact inference), respectively. Red curves represent matched condition, black curves
central condition. F) Posterior over number of samples for an example subject. The posterior peaks for small values for ns,
clearly constraining the degree of accuracy of the brain’s internal representation of its posterior over the auditory location/correct
choice.
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