
Towards a common philosophy of explanation for artificial and biological
intelligence

Jessica A Thompson (j.thompson@umontreal.ca)
International Laboratory for Brain, Music and Sound (BRAMS)

Montreal Institute for Learning Algorithms (MILA)
University of Montreal

Montreal, Quebec, Canada

Abstract
Much of the confusion that occurs when working at the
intersection of cognitive science, artificial intelligence,
and neuroscience stems from disagreement about what
it means to understand intelligence. I claim that to inte-
grate these fields, we must reconcile their different theo-
ries of explanation. After a brief review of the philosophy
of explanation, I recontextualize the stated views of sev-
eral prominent cognitive computational neuroscientists
in terms of the theories of explanation they espouse. Fi-
nally, I describe some of the challenges of forging a new
theory of explanation that would apply equally to artifi-
cial and biological intelligence. As a first step towards
an integration of research on biological and artificial in-
telligence, my goal in writing this paper is to equip scien-
tists of intelligence to interrogate and justify the theories
of explanation that underlie their definitions of scientific
progress.
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Integration of AI and neuroscience
Much lip service is paid to the ”integration of deep learning and
neuroscience”, with the goal of creating a feedback loopdeep
learning for neuroscience and neuroscience for deep learning.
This turns out to be hard to do in practice. The confusion when
trying to work at this intersection comes in large part from lack
of agreement about what progress towards a common goal
would look like. This topic came up at the inaugural Cogni-
tive Computational Neuroscience (CCN) conference last year,
which was assembled to unify the ”disconnected communities
of cognitive science, artificial intelligence, and neuroscience”
towards the common goal of ”understanding the computa-
tional principles that underlie complex behavior” (Naselaris et
al., 2018). Jim DiCarlo, chairing a panel discussion, asked,
”when people say they want to work together, usually there
is some idea of a shared goal...some idea of what success
would even look like...are we even after the same thing?” This
question received a number of very different answers from
the panel, demonstrating the challenge of even agreeing on
a common goal. Panelist Yann LeCun stated the common
goal to ”explain intelligence” but this doesn’t answer the ques-
tion because we disagree about what is important to explain
intelligence. LeCun wants to replicate animal intelligence in
artificial systems. On the other hand, for neuroscientist Jackie

Gottlieb, ”success means characterizing a system at a par-
ticular level of abstraction ... in a way that is reproducible
and solid” (Kay, 2017). Cognitive scientist Josh Tenenbaum,
stressed the importance of distinguishing between goals on
different time scales and suggested that all the CCN atten-
dees probably share some long term vision of success, even
if they disagree about what to do to work towards that goal
in the short term. I think that coming up with good answers to
these questions is the most important hurdle to overcome right
now. An integration of cognitive science, artificial intelligence
and neuroscience will not be possible until we are able to mo-
tivate our research by reference to a shared definition of what
it means to make progress towards the goal of understanding
intelligence.

The same debate is happening in machine learning right
now. The quest for ”interpretable” AI is ultimately asking what
explanations of AI systems will we accept? Are some systems
more explainable than others? For example, are systems that
are designed specifically to expose ’disentangled’ represen-
tations more interpretable? Several events were dedicated
to related topics at the Neural Information Processing Sys-
tems conference in 2017 (e.g. Interpretable ML Symposium,
Learning Disentangled Representations: from Perception to
Control). I think it is no coincidence that machine learning
and neuroscience are both having these conversations now.
Rather, it’s precisely because artificial systems are looking
more like biological ones and our models of biological intel-
ligence are looking increasingly like AI that we are forced to
question our standard conceptions of what makes a good ex-
planation.

These questions are ultimately in the realm of epistemology
and philosophy of science, yet philosophical theories are not
often (explicitly) invoked in the discussion. I’ve realized that
philosophers actually have a lot to say about computational
explanation in neuroscience and cognitive science. As scien-
tists, instead of reinventing the wheel, we would do well to look
to our philosopher colleagues to help us wade through these
difficult but crucially important questions about what consti-
tutes an explanation. At the very least, I think our discussion
would be simplified if we borrowed from the established lan-
guage of philosophy of explanation. But I will make a stronger
claim that what is needed is actually to create a new theory of
explanation that applies equally to biological intelligence and
artificial intelligence. The way we understand AI systems (the
methods we use to study them, the nature of explanations that
we accept) are very different from the way we traditionally un-



derstand and study biological systems. At present, this consti-
tutes a challenge to the CCN goal, but in the long term, I see
this as an opportunity to define a new science of intelligence
that includes both artificial and biological intelligence. My cen-
tral claim is that to achieve an integration of cognitive science,
AI and neuroscience, we must reconcile their different theo-
ries of explanation. Background in the philosophy of scientific
explanation of neural and computational systems will better
equip us to express our views on questions like ’how ought in-
telligence be explained?’, and ultimately to be able to design
experiments that we can rigorously justify.

Theories of Explanation

To begin, we assume that the goal of science is to know and
understand our world. A primary goal of science is to pro-
vide explanations of phenomena (be they natural, social, or
otherwise). The role of a theory of scientific explanation is
to characterize the structure of explanations in science. An
account of scientific explanation must distinguish between ex-
planations that are scientific and those that are not. It must
also distinguish between explanations and non-explanations.
Sometimes this second contrast is presented as the differ-
ence between explanation and description. For example, a
set of claims about the appearance of a particular species
may be true, accurate and supported by evidence without
being explanatory in any way. They are ”merely” descriptive
(Woodward, 2017).

An important but neglected piece of scientific literacy is the
ability to look at a set of claims or a model and decide whether
it is descriptive or explanatory (or neither) according to your fa-
vorite theory of scientific explanation. At the same time, I don’t
want to suggest that description is somehow inherently less
valuable than explanation. We must know that a phenomenon
exists before we can ever hope to explain it. In calling for bet-
ter literacy of theories of explanation, my wish is not to reduce
the amount of descriptive science, but rather to reduce the
misrepresentation of scientific activities. If we already think
that we are explaining, then we will not spend time figuring
out how to explain. Instead, if we acknowledge that what we
are currently doing is descriptive, we can better see our role in
a larger scientific enterprise, i.e. the role of a particular series
of experiments may be to describe a specific set of phenom-
ena that may later be explained by other experiments. When
our perceived explanatory power is inflated, we’re closed off
from seeing how we might work together to ultimately better
explain in the long term.

What do contemporary scientists say?

In this section I will discuss how some computational neuro-
scientists have recently answered the question ”what makes a
good model (or theory) of the brain?” In their answers, we will
find their philosophical commitments.

In his talk Playing Newton: Automatic Construction of Phe-
nomenological, Data-Driven Theories and Models, Ilya Ne-
menman refutes the claim that a good theory of brain must

be a large, multi-scale computational model with a quote from
Wiener and Rosenblueth, ”Theories must lose details and
must be developed to explain limited sets of phenomena. Oth-
erwise, the best material mode of a cat is another, or prefer-
ably the same, cat” (Philsophy of Science, 1945). In other
words ”Don’t model bulldozers with quarks” (Goldenfeld and
Kadanoff, 1999). A good theory is one that accurately ex-
plains a limited set of phenomena and throws away everything
is wasn’t designed for (Nemenman, 2018). But what does it
mean to explain to Nemenman? He claims that philosophy
has failed to define science, but maybe we don’t need it any-
way because we have Bayesian statistics. Bayesian statistics
can already tell us what is falsifiable and what is falsified. If
theory does not explain observed data then the theory is fal-
sified. If theory can explain any dataset, then it is unfalsifi-
able. What makes a good model of the brain is determined
by Bayesian model selection. The goodness of a theory is
related to generalization and prediction, with little regard to
whether it is true. Falsifiability is then real-valued and empiri-
cal. If it explains the data, we don’t care if it is correct or not.
Good models:

• are phenomenological

• predict your data and generalize to new data and experi-
ments

• Only explain the specific question they were designed to
answer with as few parameters as possible

This view reflects the well known heuristic of Occam’s Razor:
the best solution is the one that explains the data best with the
simplest model.

Neumenman advocates for phenomenological models,
which have been characterized by philosophers of science as
”black box models” because they merely capture input-output
relationship for the phenomena to be explained without posit-
ing intervening variables or mechanisms. In computational
neuroscience, phenomenological models are called descrip-
tive models because they ”summarize data compactly” without
addressing ”the question of how nervous systems operate on
the basis of known anatomy, physiology, and circuitry” (Dayan
& Abbott, 2005). Nemenman stresses that the important test
is whether the model generalizes to unseen data and new sit-
uations (Nemenman, 2018). Consider the Balmer formula as
a counter example, which was constructed to describe the four
visible lines in the emission spectrum of hydrogen. Not only
does this model accurately capture the target phenomena, but
it also successfully predicted the existence of previously unob-
served spectral lines outside of the visual range. Despite its
success, none of the model elements have any physical in-
terpretation. Balmer arrived at this formula via trial and error
curve fitting to find the best mathematical fit to the four visi-
ble spectral lines of hydrogen. It is generally agreed that the
Balmer formula is not explanatory because it does not explain
why the emission spectrum for hydrogen shows the pattern
that it does (Kaplan, 2011). Phenomenological models can



certainly be very useful and are an important part of any sci-
entific enterprise, but to claim that they are explanatory is a
difficult claim to defend.

In Principles for models of neural information process-
ing (2017), Kendrick Kay defines cognitive neuroscience to
be the quest for explanations of the mind in terms of the
brain. Yet, in his definition of explanation, he says ”mod-
els posit that specific variables relate to neural activity. As
such, models provide explanations of measurements of the
brain.” Is the phenomena to be explained by the model the be-
haviour/perception of the animal or the neural activity itself?
The implication seems to be that if we can explain the activity,
this will imply an explanation for the behaviour or perception.
Consider the example given in the paper, why is a neuron
highly active during a clip of rock music? We can compare
different models (the neuron responds to sound intensity vs
the neuron responds to guitar tones) to decide which model
is more accurate. For example, we can vary the intensity of
a variety of sounds and find that the activity of this neuron
scales with the sound intensity, while not being selective to
any other tested features. Have we then explained the activity
of this neuron and at the same time, explained perception of
sound intensity? Some philosophers claim that explanations
of human brains proceed via this type of functional analysis,
”according to the explanatory strategy of functional analysis,
the overall behavioral capacities [are] explained by breaking
down or decomposing the capacities into a number of ”sim-
pler” subcapacities and their functional organization” (Kaplan,
2011). This theory of explanation goes hand in hand with the
information processing theory of mind. When you assume that
the brain is best understood as an information processing ma-
chine, then once you’ve discovered the signals that it sends
around and the operations that it performs, then you should be
able to explain the resulting behaviour. Under a different the-
ory of mind (e.g. embodied dynamicism), or a different theory
of explanation (e.g. mechanistic), functional analysis is not
explanatory. However, many mechanists would say that func-
tional analysis is a necessary step en route to a mechanistic
explanation.

Jonas Kubilius, also asks the question ’what does it mean
to understand?’ in his commentary Predict, then simplify. To
Kubilius, predictive power is the first and foremost attribute on
which to assess a model. He and the rest of Jim DiCarlo’s
lab appear to be staunch predictivists, taking an engineering
approach to neuroscience. This has led their group to find
that deep neural network models trained originally for visual
object recognition, better predict activity in much of visual cor-
tex better than previous ’scientist designed’ models (Yamins
& DiCarlo, 2016). Predictivism, refers to the view that phe-
nomenological models are explanatory by virtue of their de-
scriptive and predictive power. The problems facing predic-
tivism are well known in philosophy of explanation. ”Simple
examples readily expose how accurate prediction is insuffi-
cient for explanation, and so how the predictive import of a
given model can and often does vary independently of its ex-

planatory force. On can accurately predict a storm’s occur-
rence from a dropping barometer, but this does not explain the
occurence of the storm. Rather, a common cause—a drop in
atmospheric pressure—explains both the dropping barometer
value and the approaching storm. Similarly, a p-model might
be predictively adequate, and yet its variables might only rep-
resent factors that are mere behavioural correlates of some
common or joint cause for the target phenomenon. Just as
we reject the claim that p-models of this kind provide expla-
nations, we should also resist the claim that p-models of this
kind provide explanations” (Kaplan, 2011, p.351). A defense
of predictivism must ultimately address these types of counter
examples.

On first read of Kay an Kubilius, one might think that their
disagreement about DNNs being explanatory models of the
brain comes from placing different values on the predictive
power of a model. Kubilius says predictive power comes first
and foremost. Where as Kay says that the model must first
be ”understood” before it can explain. Yet both rely largely
on prediction of observational data to validate their models.
The larger disagreement is about the form of a ”good” model.
Both Nemenman and Kay ascribe to the heuristic of Occam’s
Razor, that the simplest model that explains the data is best.
They want the number of components to be small because
ultimately their modelling efforts are about finding which com-
ponents are important. Kubilius points out that although his-
torically, science’s greatest successes have been the result
of describing complex systems with relatively few parameters,
there is no reason to assume that this will be the case for un-
derstanding the brain. Others have pointed out the absurdity
of Occam’s Razor, ”how could a fixed bias toward simplicity
indicate the possibly complex truth any better than a broken
thermometer that always reads zero can indicate the temper-
ature? You dont have to be a card-carrying skeptic to wonder
what the tacit connection between simplicity and truthfinding
could possibly be” (Kelly, 2007). This adherence to Occam’s
razor part of what separates Neumenman and Kubilius. Sim-
pler things seem to be easier for us to understand, so the
tendency of science to look for simplicity when it is available
makes sense. Kubilius suggests that we may look for simple
generative processes that generate complex systems. For ex-
ample, training deep neural networks depends on a number
of principles (e.g. optimization of cost functions via gradient-
based methods, compositionality, distributed representations)
that is likely smaller than the number of parameters in the
model.

Towards a new theory of explanation for a new
science of intelligence

There is a growing body of work trying to understand
deep learning using empirical methods that look almost
neuroscientific: ablation analyses, receptive field analy-
sis, psychophysics. Nikolas Kriegeskorte calls it ”synthetic
neurophysiology”(Kriegeskorte, 2015), Jeff Clune calls it ”ar-
tificial neuroscience”(Metz, 2018), and Maithra Raghu calls



is ”deep learning science” (personal communication, Dec 7
2017), presumably because it involves applying the scientific
method to understanding artificial systems. What I find most
exciting about this line of inquiry is that it makes many connec-
tions to deep learning theory. If we can relate deep learning
theory to empirical analyses of deep learning systems, then
might there also be the potential to relate our empirical analy-
ses of biological intelligence to a similar mathematical under-
standing? On the other hand, Eric Jonas and Konrad Kord-
ing asked Could a neuroscientist understand a microproces-
sor? in their work which applied common neuroscientific anal-
yses to electrical measurements of a microprocessor. They
show that although these analyses were able to make repli-
cable/reliable descriptions of patterns of activity, they did not
ultimately reveal the known and accepted explanation of how
the microprocessor works (Jonas & Kording, 2016). Swapping
methodologies, approaches and philosophies between deep
learning and neuroscience has the potential to demonstrate
the strengths and limitations of our scientific activities and per-
spectives, helping us to select those that will be most useful
towards our common goal of understanding intelligence.

These approaches are still pre-theoretical in the sense that
they do not fit well into existing theories of explanation. All
contemporary theories of explanation in neuroscience focus
on physical computation. The mechanistic account, which cur-
rently dominates philosophy of neuroscience, requires that ex-
planations consist of physical components in causal relation-
ships with one another. The explanations we have for deep
learning are concerned with abstract computation. The same
principles hold regardless of which type of GPU your model is
trained on. Reconciliation of these views suggests a commit-
ment to multiple realizability. However multiple realizability is
often associated with functionalism and computational chau-
vinism. We want a version of multiple realizability for the 21st
century aligned with a modern theory of mind.

Conclusion

If our ultimate goal is truly to explain intelligence, then we must
eventually agree on a theory of explanation that accounts for
successful explanations of both artificial and biological intelli-
gence. Although the mechanistic framework is currently very
popular in most of philosophy of science, it is difficult to ap-
ply to the explanation of cognitive phenomena. Hence, much
of cognitive and computational neuroscience that claims to be
explanatory relies on older problematic theories of explanation
and outdated theories of mind. To forge a new path forward,
we need to first acknowledge that we fundamentally do not
know how to explain intelligence. Until we do, let us be ex-
plicit about our philosophical commitments and let us value
our descriptions without mistaking them for explanations.

References
Dayan, P., & Abbott, L. (2005). Theoretical neuroscience:

Computational and Methematical Modeling of Neural Sys-
tems. MIT Press.

Jonas, E., & Kording, K. P. (2016). Could a neuroscientist
understand a microprocessor ? bioRxiv , 055624. doi:
10.1101/055624

Kaplan, D. M. (2011). Explanation and description in compu-
tational neuroscience. Synthese, 183(3). doi: 10.1007/s1
1229-001-9970-0

Kay, K. N. (2017). Principles for models of neural in-
formation processing. NeuroImage(March), 1–9. doi:
10.1016/j.neuroimage.2017.08.016

Kelly, K. T. (2007). Simplicity , Truth , and the Unending Game
of Science. In S. Bold, Benedikt Lowe, T. Rasch, & J. van
Benthem (Eds.), Foundations of the formal sciences v: Infi-
nite games.

Kriegeskorte, N. (2015). Deep neural networks: a new frame-
work for modelling biological vision and brain information
processing. Annual Review of Vision Science, 1, 417–446.
doi: 10.1101/029876

Metz, C. (2018, mar). Google Re-
searchers Are Learning How Machines Learn.
https://www.nytimes.com/2018/03/06/technology/google-
artificial-intelligence.html.

Naselaris, T., Bassett, D. S., Fletcher, A. K., Kording, K.,
Kriegeskorte, N., Nienborg, H., . . . Kay, K. N. (2018).
Cognitive Computational Neuroscience: A New Conference
for an Emerging Discipline. Trends in Cognitive Sciences,
22(5), 365 – 367. doi: 10.1016/j.tics.2018.02.008

Nemenman, I. (2018). Playing Newton: Automatic Construc-
tion of Phenomenological, Data-Driven Theories and Mod-
els. https://simons.berkeley.edu/talks/ilya-nemenman-4-17-
18.

Woodward, J. (2017). Scientific Explanation. In E. N. Zalta
(Ed.), The stanford encyclopedia of philosophy (https://pl
ed.). Metaphysics Research Lab, Stanford University.

Yamins, D. L. K., & DiCarlo, J. J. (2016). Using goal-driven
deep learning models to understand sensory cortex. Nature
Neuroscience, 19(3), 356–365. doi: 10.1038/nn.4244


		2018-08-20T14:49:56-0500
	Preflight Ticket Signature




