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Abstract
The convolution operator is an essential tool in digital signal
processing. Among many other things, it grants tremendous
perceptual ability to a popular class of deep learning models
known as convolutional neural networks; however, the con-
volution operator’s neural implementation typically requires
dense connectivity, so it also diminishes the biological plau-
sibility of such models. We found that the convolution of an
input vector with a parabolic function can be performed with-
out dense connectivity. Specifically, this operation can be
performed by a laterally connected (i.e., biologically plausi-
ble) neural network that evolves in continuous time (a “neu-
ral field”). This particular convolution is shown to have useful
properties for centroid estimation. Rapid and precise centroid
estimation is known to take place early in the human visual
system (Drew, Chubb, & Sperling, 2010) (Sun, Chubb, Wright,
& Sperling, 2016), but to date, this computation lacks an ad-
equate biologically plausible neural model. Using the afore-
mentioned results, we present such a model.
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Methods
A concise description of the model will be facilitated by some
preliminary definitions.

Definitions

Shift function Let Z be the set of all integers. For any func-
tion f : Z→R and k ∈ Z, define the function Sk( f ) by setting

Sk( f )[x] = f [x− k] (1)

for all x ∈Z. Sk is called the shift transformation with displace-
ment k.

Convolution matrices It will be convenient to use
0,1, · · · ,N − 1 to index the rows and columns of an N ×N
matrix.

We use the term “convolution matrix” to refer to any N×N
matrix φ whose rth row is identical to the 0th row of φ circularly
shifted by r columns. Specifically, for r = 1,2, · · · ,N−1

φr,c = φ0,(c−r)† (2)

where

n† =

{
n if n≥ 0

N +n otherwise. (3)

Block convolution matrices Further, it will be convenient
to use 0,1, · · · ,M−1 to index the partitions of an NM×NM
block matrix partitioned into N×N blocks.

We use the term “block convolution matrix” to refer to any
such NM×NM block matrix Φ whose submatrices are con-
volution matrices as defined in (2) and whose rth row partition
is identical to the 0th row partition of Φ circularly shifted by rN
columns. Specifically, for r = 1,2, · · · ,M−1

Φr,c = Φ0,(c−r)† (4)

where Φr,c is an N×N convolution matrix and

m† =

{
m if m≥ 0

M+m otherwise. (5)

A matrix of this form may be viewed as a linear transformation
that convolves a 2-D N×M input (recast as an NM×1 input
vector) with a 2-D periodic function.

We use X for a particular block convolution matrix whose
0th row elements are equal to the column indices of their N×
N submatrix. Thus, for N = 4 and M = 4,

X0,∗ =
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2
2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1
1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0


(6)

We use Y for a particular block convolution matrix whose 0th

row elements are equal to the indices of their column partition.
Thus, for N = 4 and M = 4,

Y0,∗ =
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3


(7)

The model

Architecture Our model consists of (1) a primary set of
toroidally connected neurons and (2) an auxiliary set of
toroidally connected neurons with one-to-one correspondence



Figure 1: A. Diagram of lateral connectivity for an instance of the model where N = 4 and M = 4. All connections shown are
bidirectional with excitatory weight 1

4 . This connectivity holds for neurons in both ~A and ~P. Numbers indicate the index of a
neuron within a vector. Red weights complete each row cycle, and blue weights complete each column cycle such that the
neuron at index 0 is connected to neurons at indices 3 and 12 (as well as 1 and 4). B. Schematic diagram of overall connectivity
in the model. Each square represents a set of neurons ~A or ~P with internal connectivity shown in Figure 1.A. The bold arrows
labeled ~B and ∂~B

∂t represent input to ~A and ~P respectively. Textured areas of each square represent quadrants where input is

forbidden. The bold arrow labeled “+” represents one-to-one feedforward connectivity from neurons in ~P to neurons in ~A.

to the primary set. These two sets of neurons constitute a dy-
namical system whose evolution over time can be described
by a pair of differential equations:

∂~A
∂t

=W~A+~P−~B

∂~P
∂t

=W~P− ∂~B
∂t

(8)

In the above notation, ~A and ~P track the activation of neu-
rons in the primary set and auxiliary set, respectively. The
vector ~B tracks the input values to the system, and we think
of ~B as a spatiotopic representation of light intensities or We-
ber contrasts. The matrix W gives the connectivity between
neurons. We specify W by first defining a submatrix W.

Let W be the convolution matrix whose 0th row is defined
as follows for all columns c:

W0,c =


−1 if c = 0,
1
4 if c = 1 or c = N−1,
0 otherwise.

(9)

Then we specify W to be the block convolution matrix whose
0th row partition is defined as follows for all column partitions
c:

W0,c =


W if c = 0,
1
4 I if c = 1 or c = M−1,
0 otherwise.

(10)

When we say that the neurons in ~A and ~P are toroidally con-
nected, we mean that each row of W has exactly five non-zero

elements that connect a neuron to itself, its two row neighbors,
and its two column neighbors. The M diagonal submatrices of
W each contain the entire within-cycle connectivity of a single
cycle of N neurons connected poloidally. There are M such
cycles, and the cycles themselves are connected toroidally.

The indices of neurons in the model correspond to equidis-
tant points in a periodic domain. If we apply the same circular
shift to ~A, ~P, and ~B, we do not change the relationship be-
tween points. This property leads to degenerate input cases
such that the input is cumulatively non-zero, but a centroid
for the input cannot be computed (e.g., the case where input
values are evenly distributed across the space). To prevent
degenerate cases from appearing, we restrict the input to one
contiguous quadrant of the periodic domain and require the
model to have an even period in both dimensions. Thus, for
a period length N ∈ 2Z and period width M ∈ 2Z, valid input
must have the form

B[n,m] ∈ R for n = 0,1, · · · N
2
−1; m = 0,1, · · ·M

2
−1

B[n,m] = 0 for n =
N
2
, · · · ,N−1; m =

M
2
, · · · ,M−1.

(11)

Dynamics Consider the 0th element of the dot product W~A:
this element is the sum of a decay term−A0 (the decay of the
0th neuron’s activation in proportion to its present activation)
and four quarter-weighted inputs A1, AN−1, AM , and AN(M−1)

(the excitation of the 0th neuron by its neighbors). The decay



term produces a tendency in the 0th neuron toward the resting
activation, 0. Since the sum of four quarter-weighted inputs is
equal to their mean, W altogether produces a tendency in the
0th neuron toward the mean activation of its neighbors. The
same is true of W with respect to all neurons in ~A and ~P.

It is also worthwhile to note that the sum of any row or col-
umn in W is equal to 0. This means that the within-vector
diffusion of activation never changes the cumulative activation
of the cycle (hence the emphasis on “diffusion”). That is,

NM−1

∑
n=0

∂An

∂t
= 0+

NM−1

∑
n=0

Pn−
NM−1

∑
n=0

Bn

and
NM−1

∑
n=0

∂Pn

∂t
= 0+

NM−1

∑
n=0

∂Bn

∂t
.

(12)

Thus the terms W~A and W~P in (8) preserve the cumulative
activation of their respective vectors but redistribute the acti-
vation as to smooth any local activation differentials, pushing
~A and ~P toward uniform activation.

Naturally, we are interested in the steady state of the sys-
tem given some constant input. To understand what this looks
like, it is helpful to first consider the steady state of ~P. Given
~P =~0 at t = 0, ~P will remain a zero vector until there is some
change in the input. Let’s consider the case that the input be-
gins changing, and at time t1, the new input pattern stabilizes.
Then the cumulative activation in ~P at time t1 can be derived
in the following way:

NM−1

∑
n=0

∫ t1

0

∂Pn

∂t
dt = 0+

NM−1

∑
n=0

∫ t1

0

∂Bn

∂t
dt

NM−1

∑
n=0

Pn

∣∣∣t1
0
=

NM−1

∑
n=0

Bn

∣∣∣t1
0

NM−1

∑
n=0

Pn,t1 =
NM−1

∑
n=0

Bn,t1

(13)

Thus at all times t1 ≥ 0, the cumulative activation of ~P is
equivalent to the cumulative activation of the instantaneous
input. As ~P changes, there will be activation differentials in ~P
around the input elements that are changing; this differential
will be smoothed by the action of the diffusion term W~P in (8).
Thus, on constant input, ~P will converge on a uniform vector
where each element is equal to the average activation of the
input ~B.

As expressed in (8), the change in activation in ~A over time
depends on the instantaneous state of ~P. Once again, it useful
to consider the cumulative within-vector change. Combining
(8) and (13), we see that the cumulative voltage in ~A is always
0. Thus any change in the activation from baseline in ~A is
accompanied by an equal and opposite change elsewhere in
~A. Change is induced by ~B which has a direct inhibitory effect
on ~A and an indirect excitatory effect via ~P.

Physical intuition For an intuitive description of the out-
ward behavior of our model, an inner tube is a useful phys-

ical metaphor. Our metaphorical inner tube has two basic at-
tributes, membrane shape and internal pressure. These cor-
respond to values in ~A and ~P, respectively. We can provide
“input” to the inner tube by pinching it at several points with
varying intensity; similarly, an input image makes an impres-
sion on ~A by clamping the activation of the neurons under-
neath it. By pinching the inner tube, we reduce its volume and
increase its internal pressure, inducing distension elsewhere;
similarly, an input image increases the cumulative activation
in ~P, inducing a uniform positive offset across ~A. The activa-
tion differentials in ~A produced by these forces is smoothed by
the action of the diffusion term W~A; in the case of the inner
tube, smoothing is the result of tension on the membrane and
internal diffusion of air.

At the steady state, the combination of these forces pro-
duce an activation pattern that is negative around the input
image and positive elsewhere. It can be shown that, in the
“readout” quadrant (i.e., the quadrant opposite the input quad-
rant) the resultant activation pattern is equal to a convolution
of the image with a negative parabolic function. This will be
stated formally in (19). Moreover, the extremum of this con-
volution identifies the centroid of the image, as will be stated
in (15). Thus, at the steady state, the index of maximum ac-
tivation along ~A will always be antipodal to the centroid of the
input image.

Convolution with a shifted parabolic function

Consider f ∗ ∗g for any function f : Z2 → R2 with domain
([0,N− 1], [0,M− 1]) and periodic function g[x,y] that takes

the value −
(
x− N

2

)2−
(
y− M

2

)2
across x = 0, · · · ,N−1 and

y = 0, · · · ,M−1:

f ∗∗g[x,y] =
N−1

∑
n=0

M−1

∑
m=0
− f [n,m]

[(
x−n− N

2

)2

+

(
y−m− M

2

)2
]
(14)

Theorem

If
N−1

∑
n=0

M−1

∑
m=0

f [n,m]> 0,

argmax
x
{ f ∗∗g}= ∑

N−1
n=0 ∑

M−1
m=0 n f [n,m]

∑
N−1
n=0 ∑

M−1
m=0 f [n,m]

+
N
2
, and

argmax
y
{ f ∗∗g}= ∑

N−1
n=0 ∑

M−1
m=0 m f [n,m]

∑
N−1
n=0 ∑

M−1
m=0 f [n,m]

+
M
2
.

If
N−1

∑
n=0

M−1

∑
m=0

f [n,m]< 0,

argmin
x
{ f ∗∗g}= ∑

N−1
n=0 ∑

M−1
m=0 n f [n,m]

∑
N−1
n=0 ∑

M−1
m=0 f [n,m]

+
N
2
, and

argmin
y
{ f ∗∗g}= ∑

N−1
n=0 ∑

M−1
m=0 m f [n,m]

∑
N−1
n=0 ∑

M−1
m=0 f [n,m]

+
M
2
.

(15)



These equations can be derived from the 1st and 2nd partial
derivatives of (14) with respect to x and with respect to y.

In the model, we take f = ~B. Moreover, let us define a
convolution matrix C that performs the convolution of an input
vector with g such that C~B = f ∗ ∗g. We specify C by first
defining a submatrix C. Let C be the convolution matrix whose
0th row is defined as follows for all columns c:

C0,c =−
(

c− N
2

)2

. (16)

Then let C be the block convolution matrix whose 0th row par-
tition is defined as follows for all column partitions c:

C0,c = C−
(

c− M
2

)2

, (17)

or (equivalently)

C = S N
2
( f1)[X]+S M

2
( f2)[Y] (18)

for periodic function f1[x] that takes the value −x2 across x =
−N

2 , · · · ,
N
2 −1 and periodic function f2[x] that takes the value

−x2 across x =−M
2 , · · · ,

M
2 −1.

It can be shown that at the steady state,

~A =
1

NM
C
(
~B+(k−b)~1

)
(19)

for scalars k and b.
That is, at the steady state, the activation in ~A is equal

to an affine transformation of ~B convolved with −
(
x− N

2

)2−(
y− M

2

)2
. Since N > 0 and M > 0,

argmax
{

1
NM

C
(
~B+(k−b)~1

)}
= argmax{C~B}= argmax{~A}.

(20)
Thus, from (15) we know that at the steady state, the x-

index of the extremum in ~A is located a half-period in the x-
dimension from the centroid of the input (and similarly for the
y-index of the extremum in the y-dimension). An analogous
statement is true of the index of the minimum.

Results
Simulation As stated above, it can be shown that the cen-
troid estimates provided by the model are guaranteed to be
precise. Thus, Figure 2 suffices to illustrate the model’s ability
to estimate the centroid of a sparse dot cloud stimulus, as is
used in the study of attentional filters (Drew et al., 2010) (Sun
et al., 2016).
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Figure 2: Input and steady state activation for three different
dot stimuli given an instance of the model where N = 20 and
M = 20. Values for input and activation range from 0 to 1,
corresponding to black and white respectively. The input is re-
stricted to the top left quadrant. The readout quadrant is out-
lined in red. The index of max activation in ~A is marked by an
X. Top: true centroid: (6.71,5.29); estimate: (17.00,15.00).
Middle: true centroid: (3.00,3.00); estimate: (13.00,13.00).
Bottom: true centroid: (5.40,5.80); estimate: (15.00,16.00).
Indices are enumerated left-to-right and top-to-bottom. Note
that a difference of (10,10) between the true centroid and the
estimate should be observed for a matrix of these dimensions.
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