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Abstract: 

Despite much research demonstrating face selectivity 
within a core set of brain regions, many questions remain 
regarding this putative network for face perception, 
including the role of task demands on processing. A 
recent study (Kaul et. al, 2014) demonstrated that 
decodability of face race in a fusiform face-selective area 
(FFA) was significant for fMRI activation patterns elicited 
during a team-discrimination task but not during a race-
discrimination task. This suggests that cognitive task – 
specifically, the requirement for facial individuation – 
may play a significant role in the recruitment of FFA. We 
sought to replicate this research and extend its 
conclusions by 1) explicitly manipulating stimulus 
luminance histogram normalization, to determine 
whether race-decodability in a given region is 
attributable to low-level properties, 2) analyzing a range 
of visual cortical ROIs and applying searchlight analyses 
to examine face information and the influence of 
cognitive task in regions lying functionally “between” V1 
and FFA, and 3) including a gender task to ask whether 
the influence of cognitive task applies to all simple, 
binary discriminations (male/female, black/white), or is 
instead specific to race discrimination. An initial sample 
(n=8) yields promising decoding of race and gender and 
paves the way for hypothesis testing with a full sample. 
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Introduction 

Face perception is thought to be underpinned by a 
core network of brain regions including early visual 
cortex, an occipital face-selective region (OFA), 1-2 
fusiform face-selective regions (FFA), along with an 
extended network of regions in anterior temporal and 
frontal cortex. Recent evidence that face race can be 
decoded from BOLD activity patterns in FFA during a 
team-discrimination task but not a race-discrimination 
task (Kaul et. al, 2014) suggests that person-level 
identification may determine the recruitment of regions 
of the face perception network posterior to the occipital 
lobe. We also hypothesized that the presence of low-
level stimulus properties that reliably indicate race (e.g., 
color, luminance) would modulate the recruitment of 
specific regions in the core network. Specifically, the 

presence or absence of low-level properties should 
make less difference to the race-decodability of evoked 
brain patterns in anterior regions such as FFA (thought 
to employ higher-level, holistic representations) and 
more difference to race-decodability in posterior regions 
such as V1. In V1, stimuli possessing low-level 
properties that indicate race should elicit brain patterns 
with greater race-decodability than stimuli that do not. 
Regarding the effect of cognitive task (race-, gender-, 
or team-discrimination) we hypothesized that it would 
affect the race-decodability of brain patterns in anterior 
regions such as FFA more than in posterior regions 
such as V1 (with the team-discrimination task producing 
greater race-decodability in FFA than the race or 
gender tasks). Further, we predicted that task effects for 
gender-decodability would mimic those for race-
decodability, but that stimulus normalization would have 
little influence on gender-decoding.  

Method 

Eight individuals (to date) participated in a functional 
Magnetic Resonance Imaging (fMRI) study at UMass 
Amherst. Before the scan, participants underwent a 
short behavioral training in which they learned to assign 
12 faces to one of two teams (3 men/women and 3 
black/white per team). We trained participants until they 
assigned all 12 faces to the correct team twice in a row 
(~20-min, cf. 3-min of study time in Kaul et al. 2014). 

The experiment consisted of 8 functional runs, a T1-
weighted MPRAGE sequence, field mapping scan, 2 
functional localizer scans and 0-2 retinotopic localizer 
scans. Each functional run consisted of 6 blocks: 3 
discrimination task blocks (gender, race and team) 
crossed with 2 levels of stimulus normalization (non-
normed, normed). Each task was presented once per 
run in pseudorandom order with no task block repeats. 
Stimulus normalization (full color un-normalized versus 
grayscale mean-luminance and luminance histogram 
normalized) alternated across blocks. Normalization 
was performed using the SHINE toolbox (Willenbockel 
et. al, 2010). Each block contained a pseudorandom 
sequence of the faces of 12 individuals, drawn from 2 
images of each individual across which face orientation 



‘or expression was modulated. Face images were taken 
from the FERET database (Philips et. al, 1998; 2000) 
and were cropped to remove hair, jewelry, and 
background. Stimuli were presented at a size of 6 deg.  

The fLOC experimental code (Stigliani, Weiner, Grill-
Spector, 2014) was used to map up to 3 face-selective 
regions per subject and hemisphere in occipital (OFA), 
posterior fusiform (pFFA) and mid-fusiform (FFA) 
areas. ROIs were combined across hemispheres, and 
“FFA-all” was defined by combining both fusiform face-
selective regions. Retinotopic regions were defined 
using a recent V1-V3 atlas (Benson et. al, 2014). 
Additionally, OFA, FFA, and (in left-hemisphere) aIT 
were mapped in the group space for visualization.  

To perform decoding analyses, we constructed 
multiple General Linear Models (GLMs) to extract beta-
weights. For each variable we sought to decode 
(gender, race), we constructed three GLMs in which 
stimulus assignment was split by the decoding variable 
(black/white, male/female) and neither, one, or the 
other of {stimulus normalization, behavioral task}. This 
allowed us to examine decoding performance 
irrespective of task and stimulus normalization, or as a 
function of either stimulus normalization or behavioral 
task. Leave-one-run-out cross-validation resulted in a 
mean classification score per condition per subject.  

Searchlights were carried out in native volumetric 
space with 100 voxel spheres under a cortical mask. 
Resulting volumetric maps were intersected with the 
mid-cortical thickness using Freesurfer to acquire 
subject-specific surface maps. These maps were then 
converted to fsaverage, smoothed with a 6mm FWHM 
kernel, and averaged to produce the group maps.   

Results 

Group means ± 95% confidence intervals for ROI 
decoding analyses of 8 subjects are shown in Figures 
1-3. All statistical tests were performed on logit-
transformed classification accuracies (not shown). 

Figure 1 shows decoding of race and gender in 
several ROIs. T-tests comparing accuracy to chance 
(FDR-corrected for multiple comparisons) indicated that 
race-decoding was above chance in V1 only, whereas 
gender decoding was above chance in all ROIs shown. 
As predicted, Figure 2 shows that race decoding 
accuracy was lower for normalized than un-normalized 
(original) images in early visual cortex, and this 
difference disappeared in FFA. T-tests comparing 
accuracy to chance revealed significant race-decoding 
in V1, V2, V3 and OFA for un-normalized stimuli only, 
and no significant gender-decoding for either stimulus 
normalization type in any ROI (note: each accuracy 
score is derived from only half the data per accuracy 
score in Fig 1).  

A 2-way ANOVA on logit-transformed race-decoding 
accuracies with Factors ROI (V1, FFA) and stimulus- 

 
normalization (orig, norm) revealed a borderline 
interaction between ROI and stimulus-normalization 
(F(1)= 3.59, p = 0.068). As predicted, the effect of 
normalization on gender-decoding was less 
pronounced and did not differ according to ROI (a 2-
way ANOVA revealed no main effect of stimulus-
normalization and no ROI*stimulus-normalization 
interaction). 

Figure 3 shows the influence of task on race- and 
gender-decoding. Numerically, a team-discrimination 
task, which requires perceptually challenging person-
level identification, increases race-decoding relative to 
a less challenging race task, in both V1 and OFA, but 
not in FFA. Thus, the pattern across V1 and FFA was 
not as predicted, because it contrasts with the results of 
Kaul et al. (2014). However, a 2-way ANOVA on race-
decoding accuracy with factors ROI (V1, FFA) and 
TaskRace, Gender, Team) revealed no main effects nor 
any interaction, perhaps because this incomplete 
dataset provides insufficient power to detect such 
effects.  

Figures 4-5 show group mean searchlight decoding 
maps of race and gender. Due to high variance in our 
small initial sample, we plot mean accuracy rather than 
the results of significance tests (e.g., -log(p)). 

 
Discussion 

 
These initial results demonstrate above-chance race 

and gender decoding in multiple ROIs of the core face 
processing network. They suggest an effect of stimulus 
normalization that varies across brain regions as -
predicted, being greater in V1 than in FFA. This finding 
is commensurate with a face-processing network in  
which earlier regions represent faces in terms of low-
level stimulus properties (e.g. luminance), while later 
regions extract higher-level representations with 
increasing invariance to those properties. Also in line 
with this account, the effect of normalization appears 

Figure 1. Decoding race and gender using beta 
weights derived from GLMs collapsed across all 
three tasks (race, gender, team) and both stimulus 
normalization conditions. 



more influential for race- than gender-decoding 
(stimulus luminance is presumed less predictive of face 
gender than face race). Our next step will be to double 
our sample size in order to provide greater power to test 
our hypotheses regarding the influence of cognitive task 
on decoding in ROIs and cortical searchlights. 
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Figure 3. Decoding using beta weights 
derived from GLMs with separate 
regressors for each level of task. 

Figure 2. Decoding using beta weights 
derived from GLMs with separate 
regressors for each level of stimulus 
normalization.  

Figure 4. Searchlight decoding of race across all 
conditions, as in Fig. 1. Mean classification 
accuracy is plotted on a range from .55 to .65. The 
occipital atlas of Wang et. al (2015) is outlined, 
along with a group of face-selective regions, as 
labeled.  

Figure 5. Searchlight decoding of gender. The 
same scale (.55 to.65) and regions as in Fig 4 are 
shown.  
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