
Signal Power as the Limited Resource of Working Memory

S. Thomas Christie (tchristie@umn.edu)
Cognitive Science, 75 E River Rd

Minneapolis, MN 55455 USA

Paul Schrater (schrater@umn.edu)
Psychology, 75 E River Road
Minneapolis, MN 55455 USA

Abstract
Working memory is famously capacity-limited, but the na-
ture of the capacity is still a matter of debate. While recent
research supports a continuous-resource model of working
memory, these models do not account for the phenomenology
of cognitive effort or the capacity’s apparent sensitivity to task
demands and incentives. We suggest that describing working
memory as a noisy information channel accounts for these
phenomena. In this view, capacity is a function of continuous
signal power that can be allocated across multiple signals. We
used a computational simulation to infer signal power for sub-
jects performing the N-back task, for N = 1,2,3. We found
that as task difficulty increases, signal power per response
is lower, but overall signal power increases, suggesting that
subjective feelings of cognitive effort may be related to signal
power. Our approach provides a parsimonious explanation for
working memory effects that grounds the continuous resource
view in an established theory while providing a plausible ac-
count of subjective effort and cognitive control.
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Introduction
While human long-term memory storage capacity is virtu-
ally unlimited, short-term or working memory is severely con-
strained. Early theorists modeled capacity as a set of dis-
crete slots (Miller, 1956), but recent research supports mod-
els of memory as a variously allocated continuous resource
(Ma, Husain, & Bays, 2014). Despite growing acceptance of
a continuous resource model of working memory, the nature
of the resource remains unclear, and the severity of its limita-
tion an object of puzzlement. It appears that working memory
does not have a fixed capacity, but rather a one that varies
(while remaining limited) in the presence of incentives (Heitz,
Schrock, Payne, & Engle, 2008). In addition, explanations of
cognitive control identify the close relationship demands on
working memory and the phenomenology of mental effort (see
Shenhav et al. (2017) for a recent review), suggesting that ca-
pacity itself is an actuator for effortful cognitive control.

We suggest that viewing working memory as a noisy infor-
mation channel provides a parsimonious account of the ca-
pacity limitations of working memory, the flexibility of those
limitations, and the ability to adapt to incentives. In this view,
the limited continuous resource supporting working memory
is simply signal power. A signal is the neural representation
of information in working memory. This can be represented in

terms of the magnitude vector of activity across a neural pop-
ulation. Signal power refers to the overall variance, or power,
of this vector.

Considering working memory as a controllable, variable-
power channel can explain capacity increases in the presence
of incentives. Information transmission rate through a channel
is a function of both inherent channel noise power and sig-
nal power (Cover & Thomas, 2012). Increased signal power
allows for faster information transmission, which could man-
ifest as increased precision memory of a single item, or as
similar precision memory of more items, depending on task
demands.

Signal power must be paid for with energy, a fact that im-
mediately grounds our proposal in terms of available energetic
resources. If noise power is fixed, increased information trans-
mission rate scales with (roughly) the logarithm of the signal
power, providing diminishing returns. If signal power is iden-
tified with neural gain, as seems reasonable (Van den Berg,
Shin, Chou, George, & Ma, 2012), the rate of available en-
ergy via blood glucose or astrocytic glycogen becomes both
a cost and a limitation. Incentives could induce a temporary
boost in signal power, but only to the extent that surplus en-
ergy is available (see Christie and Schrater (2015) for further
discussion).

In the current work, we instantiate a proof-of-concept model
of working memory as signal through an information channel,
and use this model to estimate comparative signal power of
subjects performing the N-back task. We show that as N in-
creases, accuracy falls while overall signal power increases, a
finding not accounted for by current models. Signal power is
thus a candidate for connecting for the ’resource’ underpinning
working memory, and connects the phenomenological expe-
rience of mental exertion, the fidelity constraints of memory,
and the energetic limits of neural gain.

Model

In the N-back task (Kirchner, 1958), subjects are asked to
view a series of letters (or other images or cues), and indi-
cate whether the letter most recently seen is the same as the
letter N trials ago. Each observed letter is encoded into a neu-
ral representation, transmitted through time via working mem-
ory, and finally compared with the representation of a more
recent letter. The N-back task can be viewed as involving the
transmission of cue information from the past to the present
through a noisy information channel.



Model specification

The model consists of three distinct information channels, ab-
stracted as conditional distributions which represent the crit-
ical transformations in most cognitive tasks. Each of these
distributions has a parameter which acts to adjust the amount
of information transmitted. Updating forms a simple model of
bandwidth limitations corresponding to constructs of working
memory and/or updating. In the following channels, s∗ repre-
sents signal power and λ∗ represents errors and noise.

Encoding: Sensing to Latent State Representation

p(xt |yt ;sy,λy) (1)

Update: Updating State Representation

p(zt |zt−1,xt ;sz,λz) (2)

Ouput: State to Response

p(rt |zt ;sr,λr) (3)

Distinct input symbols y are embedded as vectors x into
a latent memory representation z which is updated by noisy
shift and add operations. A response r is generated through
a readout mapping on z.

The encoding transformation is a simple vector embedding
(e.g. 1-hot). The state update equation is given by:

zt = (SSS+RRR(ε))zt−1 +

[
0
sz

]
xt +η (4)

η∼ Poisson(λz) (5)

ε∼ Normal+(λz2 ,σz) (6)

Letters yt are encoded as 1-hot vectors xt of dimension
(n× 1) (equation 1), which are subsequently multiplied by
signal amplitude sz. We interpret the outcome as a Poisson
code. Letter encodings are then embedded in a single mem-
ory vector zt of length ((N + 1)n× 1) (equation 2). As new
letters are observed, the memory vector zt is updated via a
shift matrix SSS (equation 3) with the possibility of some interfer-
ence from other letters, indicated by RRR. SSS and RRR are dimension
((N +1)n× (N +1)n). A shifted update requires that a set of
recently observed letters is represented as concatenated vec-
tor, akin to memory ‘slots’ but with the difference that each in-
corporates signal power, noise, and interference. As an image
representation is transmitted through memory, it is corrupted
by i.i.d. noise η with fixed power λz, which we treated as Pois-
son noise (equations 3 and 5). Figure 1 shows schematic of
an encoding of a single letter.

Finally, the response rt is calculated by comparing argmax
of the most recent, and latest, sections of zt .

As an example, for N = 2 and n letter possibilities, the up-
date distribution is:

~zt =

x̄t−2
x̄t−1
x̄t

=

0 In 0
0 0 In
0 0 0

+
Inε 0 Inε

0 0 0
0 0 0

~xt−3
~xt−2
~xt−1


+

0
0
sz

~xt +η

In the above equations, a new encoded image ~xt is ob-
served and incorporated into the working memory represen-
tation. In is the identity matrix of size n. Barred vectors on the
left side represent noisy updated estimates of the correspond-
ing variables on the right side. A subject response of ‘same
letter’ or ‘different letter’ is generated by comparing argmax x̄t
and argmax x̄t−2, which was observed N = 2 time steps pre-
viously.

The encoding and update scheme we chose is one of the
simplest of many possible models, easy to visualize and al-
lows for explicit representations of signal and noise power.
Our conclusions are unchanged for additive Gaussian White-
Noise signal corruption, and for more complex embedding
schemes.

Results
Simulations To illustrate the relationship between signal
power and subject response accuracy in the N-back task, we
used the model above to simulate subjects performing the
task, varying levels of interference λz and signal power sz. We
set a fixed i.i.d. noise power of λz = 1000 (arbitrary units),
specified as the variance of the generating Poisson distribu-
tion. Accuracy curves for a fixed ε = 0.3 are shown in Figure
2. For a given power budget, accuracy drops as N increases,
modeling the ubiquitous set-size effect.

Task description Subjects performed the N-back task and
were shown 6 blocks of 70 images (letters) each via Amazon
Mechanical Turk; data from additional blocks with a different
manipulation were recorded but are not included in this anal-
ysis. We calculated overall accuracy on the 1-back, 2-back,
and 3-back tasks for 26, 26, and 31 subjects respectively. Us-
ing power/accuracy curves generated by computational simu-
lation (see Figure 2), we estimated signal power for each sub-
ject. Estimated total signal power values are plotted in Figure
3.

Results We found that expended signal power budgets in-
crease as a function of N. Increase from N = 2 to N = 3 is
small but still significant (p < 0.05). Total power outlay was
calculated as N times the power estimated in a single signal.
The scale of increase resembles observed fMRI data (see fig-
ure 2B in Loughead et al. (2009)), though within-subject N-
back conditions would allow for more precise estimates.

From this, we conclude that (1) overall signal power budget
is not fixed, but adapts to task conditions, (2) signal power
scales by much less than a direct multiple of N, indicating
an intrinsic cost (though not a fixed capacity) associated with



Figure 1: Model of letter encoding and corruption by noise.
(A) The ’sent’ signal is a 1-hot encoding of observed letter
with some signal power. (B) i.i.d. Poisson noise is added to
each bin. (C) Interference from other letters is represented as
decayed signal. (D) The ’received’ signal is a noisy version
of the ’sent’ signal. The received letter is assumed to be the
letter with the highest count.

Figure 2: Simulated accuracy increases as a function of input
signal power s and noise power λz = 1000 on the N-back task
with interference proportion ε = 0.3. We assumed that a total
power budget is allocated evenly across N signals.

Figure 3: (A) Histogram of average per-signal power by sub-
ject. Row labels indicate N. (B) Estimated total signal power
outlay per subject, obtained by multiplying estiated signal
power by N. Bars represent one standard deviation.

additional resources. By requiring parameterized noise, a
signal-power interpretation also accounts for subject guess-
ing, a necessary requirement for any working memory model.

Discussion
The application of information theory to experimental psychol-
ogy, and in particular the treatment of individuals as an infor-
mation channels, is nearly as old as information theory itself
(Hyman, 1953). However, concerns regarding signal indepen-
dence and efficient coding mechanisms have led to a near
abandonment of its use in psychology (see Luce (2003), but
for an exception see Sims (2016)). We feel that this reaction
throws the baby out with the bathwater, abandoning informa-
tion theory’s computational-level conceptual framework involv-
ing signal, noise, and transmission due to concerns about im-
plementations at a lower level of analysis. With working mem-
ory research in particular, research suggests a continuous re-
source that is allocatable, flexible, and sensitive to both incen-
tives and metabolic manipulations. Information theory offers
a well-established quantitative framework that can account for
these findings while providing straightforward integration with
neural data.

In the current work we re-introduce salient concepts from
information theory and provide a proof-of-concept plausibility
argument for its application to a working memory task. Future
work is needed in order to make concrete, quantitative predic-
tions. In particular, a full Bayesian inference of signal and in-
terference noise parameters will allow model comparison with
leading variable resource theories. A follow-up study using a
within-subject design with higher values of N and simultane-
ous brain imaging would provide better sensitivity to individual
differences and insight into the possible connections between
modeled signal power and neural gain.
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