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Abstract
The process through which neurons are probed and la-
beled for imaging is a key methodological choice in quan-
tifying neuron morphology. However, little is known about
how this choice may create biases in morphometrics.
Here, we compare a large number of morphological fea-
tures amongst samples collected from the same species,
brain region, and cell-type. This allows us to identify dif-
ferences in morphologies that can only be attributed to
differences in experimental methods. In particular, we se-
lect four popular staining methods and compare each pair
of them across different regions of the adult mouse brain.
We find that all methods disagree in some respects when
we look at the morphometry of the neurons. We propose
that one explanation for this difference is the bias toward
some cell types of neurons when one particular staining
methods is being used. Our result indicates the impor-
tance of the choice of staining methods for studying neu-
ronal morphology, and suggests that more experimental
detail is needed to allow analysis across large datasets of
neuron morphology.
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Introduction
Imaging methods can reveal a lot about the characteristics of
neuron morphology. There are numerous techniques through
which a neuron may imaged and studied. Functionally, flu-
orescent dyes may be used to interrogate calcium activity, a
proxy for the voltage activity of a neuron. While new tech-
niques such as expansion microscopy allow for detailed pic-
tures of a cells internal makeup and structure (Chen, Tillberg,
& Boyden, 2015). Techniques used to identify a neurons mor-
phology generally rely on stains or dyes to target and render
visible a neurons structure. These imaging techniques pro-
vide massive amounts of data that promise to give insight into
the complicated structure of neuron morphology.

Staining methods remain one of the key imaging tech-
niques. The oldest method, Golgi staining, is a silver stain-
ing technique that randomly labels neurons in their entirety
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(Koyama, 2013). Today, Golgi staining can be divided into
three methods: Rapid Golgi, Golgi-kopsch and Golgi-Cox
(Koyama, 2013). Golgi staining must be performed after the
sample has been fixed, meaning that in vivo or in vitro record-
ings cannot be connected to histology. The stain is then im-
aged through light microscopy. Alternatively, immunostain-
ing allows neurons to be labeled in vivo or in slice samples,
meaning that electrophysiology can be related to morphol-
ogy. Immunostaining uses antibodies to target neuronal cell-
type markers, which can be labeled with fluorescent or chro-
mogenic tags for imaging. One popular class relies on biotin
variants, such as biocytin or neurobiotin, being conjugated to
an antibody. A complex of biocytin and its binding partner,
avidin, are tagged with a fluorescent or colored label that can
then be imaged. The avidin-biotin complex is beneficial for
imaging, and may be imaged through either light, fluorescent,
or EM microscopy depending on the label. Finally, fluores-
cent proteins such as GFP can be introduced transgenically
to be expressed in neurons and then imaged through fluores-
cent microscopy. (Marshall, Molloy, Moss, Howe, & Hughes,
1995) The above methods are all used today to characterize
morphology, depending on the needs of the researcher.

Although large databases of neuron morphologies exist and
provide a useful resource for studying morphology, little is
known about the effect of the experimental process on result-
ing neuron morphology. Previous studies have shown differ-
ences due to methodology over labs within a same class-type
neuron. For example (Scorcioni, Lazarewicz, & Ascoli, 2004)
studied CA1 and CA3 neurons extracted by different labs, and
demonstrated that many morphometric features show artifacts
as a result of inter-lab variation and experimental methodol-
ogy. These artifacts also obstruct accurate classification of
neuronal cell types (Vasques, Vanel, Villette, & Cif, 2016).
Hence we need to understand the source of this variability
to better utilize these databases for studying morphology.

Here we focus on variation in neuron morphology related to
the staining, or the fluorescent labeling method used, though
we will refer to both of these as staining method. We analyze
mouse data that has been uploaded by various labs to the
public morphology repository neuromorpho.org (Ascoli, 2006)
and group them based on the biological attributes and the



staining methods. By matching on biological attributes and
computing the morphometry of each group we identify the
variation that can be explained by different staining methods.

Methods

Data Acquisition

To compare neurons from different staining methods, we
used data from neuromorpho.org (v7.3), a publicly available
database of morphology. We first searched for neurons from
adult mouse that represent the control group of the source
literature. Then, we separated neurons based on their bio-
logical attribute – the primary and secondary cell class (e.g.
pyramidal and interneuron) and primary, secondary and ter-
tiary brain regions (e.g. neocortex, frontal, layer 3). We only
used neurons with complete dendritic trees, and extracted
their dendrites. These criteria specify around 10,000 neurons
(out of the 80,000 neurons comprising the entire neuromor-
pho database). Next we compared neurons that have been
extracted with four different staining methods: Golgi staining,
Golgi-Cox staining, GFP and biocytin immunostaining. At the
end of this step we found eight brain regions that have at least
two of these staining methods (Figure 1). The number of neu-
rons in these groups range between 80 to 120. We use the
naming convention for each brain region of the Allen Institute
mouse brain atlas (Figure 1a). Once these groups were iden-
tified the original research papers were double checked for
accuracy and relevance. The ultimate dataset comprises neu-
rons collected from 31 separate research articles (Table 1),
the earliest of which is from 2006 (Figure 1b). These groups
are used to quantify the effect of the staining methods.

Morphological features

To compare neuron morphology we need to quantify them.
The morphology of a neuron is modeled by a geometric graph,
where the nodes and edges represent the point on the mor-
phology and links between the points, respectively (Stockley,
Cole, Brown, & Wheal, 1993). We used a set of features that
are previously described as L-measure (Scorcioni, Polavaram,
& Ascoli, 2008). In L-measure every feature is summarized to
one scalar value. Using these feature set helps to compare
morphologies.

Statistical testing

We sought to test for an effect of staining method on mor-
phology above effects that are explained through biological
attributes. The morphological features are generally continu-
ous valued, while the biological and non-biological features
are generally categorical. Further, the morphological fea-
tures generally follow a non-Gaussian distribution (data not
shown). This requires using non-parametric tests. We use the
Wilcoxon rank sum test. That is, for biological attribute b ∈ B ,
we test:

H0(B = b) : µ1/2(M|B = b,S = s1) = µ1/2(M|B = b,S = s0),
(1)

for all b∈B , where µ1/2 represents the median, S the staining
method, and M the morphological feature. The hypothesis
that no overall effect exists for a given morphological feature
is

H0 : ∩|B|i=1H0(B = bi),

for the N levels in B. To correct for multiple testing we use the
Bonferroni correction.

Average effects

The differences in morphology between staining methods can
also be quantified over brain regions by considering the differ-
ence in means:

β j = E(E(M j|B,S = S1)−E(M j|B,S = S0)) , (2)

which summarizes the average difference in morphological
feature M j. This corresponds to the average treatment ef-
fect in the causal inference literature (Pearl, 2009), although
we make no strong claims about causality here. A null dis-
tribution for each β j is generated by repeated permutation of
staining label, allowing us to determine significance levels.

Results

To make a database for comparing staining methods, we se-
lected four popular staining methods and identified brain re-
gions in adult mice where data existed from which we could
make at least one comparison. We found eight distinct re-
gions that cover data from more than 30 recent papers. In
Figure 1 the areas of the brain studied are shown. The source
papers are listed in the Table 1. We then plot a few samples
of each group (Figure 2). Having this table lets us to find the
comparison groups between two staining methods.

To compare two staining methods for one particular mor-
phological feature, we compare the distribution of the fea-
ture for neurons in each staining method. As an example we
compare morphologies that have been extracted by Golgi and
Golgi-Cox methods. Figure 3 (top) shows that, except for one
area (CA1), all the features have a significantly different dis-
tribution. Moreover, we show the quantitative difference by
computing the absolute difference in the the mean of each
feature averaged over brain regions, we observed that, except
for two features, all of them are significantly different. Using
this approach we can test whether a morphological feature is
significantly different for two methods.

For each pair of staining method, we then asked whether
they have generated statistically similar neurons. To test this
hypothesis, we used the significant level for each feature and
counted the number of features that are (highly) significant for
all the regions tested and features recorded (Table 2). For all
the comparison pairs there are feature that are highly differ-
ent. Interestingly, we observed that among these four staining
methods, Golgi-Cox has highest percentage of different fea-
tures.



Discussion

Here we focused on the effect of the staining methods and
showed a significant difference between neurons that were
extracted from the same biological attribute but by two differ-
ent staining methods. Although this analysis was performed
for the staining method, a similar approach could be taken
to study the effect of other non-biological attributes such as
reconstruction software or objective type on the final morphol-
ogy. Understanding the source of these artifact helps us to
generate databases that reflect an accurate picture of the vari-
ation of neurons in the brain.

While our analysis highlights differences amongst ostensi-
bly equivalent brain regions and cell types, there are a num-
ber of ways of accounting for the differences in morphology
we observe. First, there may exist procedural differences
between labs, coming from preferences for particular sub-
regions or cell types or other preparation details not reported.
Second, there may exist differences caused by other method-
ological details that happen to be correlated with the stain-
ing method, not because the method goes in hand with the
staining method, but just by chance in the data we analyzed.
For example if the objective type used in the microscopy cor-
relates with different staining methods then this is a poten-
tial confound. Finally, differences may be due to the focus of
our study: there may exist differences owing to artifacts in-
herent to the different staining methods. By performing the
same comparison over lab groups and brain regions, we miti-
gate these confounding effects to some extent, and thus bet-
ter measure differences particular to staining method. But
these other explanations can not be ruled out entirely without
more controlled comparisons. This is challenging, even with
a large database such as neuromorpho.org. Specific experi-
ments would have to be performed to settle these questions.

Why might the staining method affect morphology? There
are a few possible explanations: 1) the staining methods
represent different physical and biochemical reactions that
may interact differently with different neuronal elements; 2)
different methods rely on different types of microscopy that
also may highlight different morphological features; and 3) re-
searchers may have a preference for the cleanest examples of
neuron morphology which may be different for different meth-
ods.

The features set used here is often used for the basis of
cell classification (Vasques et al., 2016). In this regard, our
results suggest the need to standardize and carefully char-
acterize these artifacts. Alternatively, although some features
are changed by different staining method, there are some less
affected by them (Figure 3). One possibility is to then use
these features, that vary most by cell type and least by stain-
ing method, as the basis of classification.

Fully characterizing neuronal morphology and its relation to
function relies on the generation and analysis of vast amounts
of data. Across neuroscience, many-institution collaborative
efforts to understand neuroscience questions are now com-
mon (e.g. (International Brain Laboratory. Electronic ad-

dress: churchland@cshl.edu & International Brain Labora-
tory, 2017). Amongst the wealth of datasets available, the
need for understanding variability due to the data genera-
tion process is important for drawing inferences and analyzing
data across disparate sources. It is important to understand
this variability when studying neuronal morphology.

Brain-
Region

Golgi Golgi-
Cox

GFP Biocytin

CA1 [1,2] [3,4] [5] [6,7,8,9]
VIS2/3 [10] [11, 12,

13]
DG-sg [14,15] [16] [17,18,19]
SS2/3 [20] [21]
mPFC2/3 [22] [23,24]
MOBgr [25] [26,27]
FC3 [28] [29] [30]
MSNs [31] [31] [31]

Table 1: Sources of morphological data submitted to neuro-
morpho.org and used in analysis, by brain region and staining
method. Search criteria to identify these papers provided in
Methods. 1. (Nobili et al., 2017), 2.(Wang et al., 2016), 3.
(Morelli et al., 2014), 4. (F. H. Lee et al., 2011), 5. (Sauer et
al., 2015) 6. (Zhang et al., 2016), 7. (S.-H. Lee et al., 2017), 8.
(Tyan et al., 2014), 9. (Basu et al., 2013), 10. (Vannini et al.,
2016), 11. (DSouza et al., 2016), 12. (Jiang et al., 2015), 13.
(Longordo et al., 2013),14. (Yanpallewar et al., 2012),15.(Qin
et al., 2014), 16. (Carim-Todd et al., 2009), 17.(Chancey et
al., 2013), 18.(Gonalves et al., 2016), 19. (Walter et al., 2007)
20. ,(Alpr et al., 2006), 21. (Smit-Rigter et al., 2012),22.
(Juan et al., 2014),23. (Nashed et al., 2015), 24.(Errico et
al., 2014), 25. (McDole et al., 2015), 26. (Breton-Provencher
et al., 2016), 27. (Belnoue et al., 2016), 28. (Karlsson et al.,
2016), 29. (F. H. Lee et al., 2011),30. (Rocher et al., 2010),
31. (Cazorla et al., 2012).

Figure 1: Brain Regions for Comparing Staining Methods.
Sagittal view of the mouse adult brain is shown. Existing brain
regions for comparison are identified by the mouse brain atlas
(Allen institute)



Figure 2: Example neurons across different brain regions and
staining methods. If there exists morphological, three sample
neurons are plotted.

Staining
Method 1

Staining
Method 2

% significant highly signif-
icant

Golgi Golgi-Cox 62 56
Golgi GFP 15 14
Golgi Biocytin 19 16
Golgi-Cox GFP 34 28
Golgi-Cox Biocytin 33 23
GFP Biocytin 13 3

Table 2: For the staining method 1 vs. 2 , percentage of
features that are significantly (p < .05) or highly significantly
(p < .001) amongst all the feature set and brain regions is
shown on the third and forth columns, respectively.
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