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Abstract
Parametrizing complex natural stimuli is a difficult and
long-standing challenge. We used a generative deep con-
vergent network to represent and parametrize a large cor-
pus of song from European starlings, a songbird species,
into a compressed low-dimensional space. We applied
psychophysical methods to probe categorical perception
of natural starling song syllables, which reveal a shared
categorical perceptual space. Some categorical bound-
aries are sensitive to the category assignment of training
syllables, indicating that the consensus is context depen-
dent and that underlying dimensions of the space are not
independent. Consistent with this, we predict the behav-
ioral psychometric function along one dimension by fit-
ting the behavior for other dimensions to artificial neu-
ral network activations. Similar predictions are obtained
by fitting spike timings of in-vivo neuronal populations,
recorded simultaneously from 10’s of neurons in a sec-
ondary auditory cortical region. Thus, knowing how the
animal responds in one sub-region of the parametrized
space informs responses in other sub-regions of both the
artificial and in-vivo spaces. Our results implicate the
importance of experience in shaping shared perceptual
boundaries among complex communication signals, and
suggest the categorical representation of natural signals
in secondary sensory cortices is distributed much more
densely than predicted by traditional hierarchical object
recognition models.
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Introduction
Understanding how secondary auditory regions encode com-
munication signals and how this representation gives rise to
psychophysical measures such as categorical perception is a
longstanding goal of sensory neuroscience. European star-
lings (Sturnus vulgaris) are an excellent established model
organism to study auditory processing and categorical per-
ception. Like human speech, starling song is composed
of learned, spectrally complex, temporally-patterned acous-
tic objects (called motifs), that are produced in long, well-

organized temporal sequences (T. Q. Gentner & Margoliash,
2003), and that function in a wide range of natural behaviors.
As with other complex natural signals, our understanding of
how birdsongs are represented in higher cortical regions, both
benefits from and is hindered by the complex spectro-temporal
character of these sounds. Multiple physiological studies have
used conspecific vocalizations, and reveal a strong selectiv-
ity for songs that emerges across the auditory forebrain and
strengthens from field L to caudomedial nidopallium (NCM)
and caudal mesopallium (CM) (T. Q. Gentner & Margoliash,
2003; T. Gentner, 2004; Thompson & Gentner, 2010; Jeanne,
Thompson, Sharpee, & Gentner, 2011). However, the lack of
parametric control over the complex acoustic features com-
posing birdsongs (and other communication signals in other
species) had rendered it difficult to more rigorously extensively
characterize the information that these regions encode (and
how). Ideally, we would like to parametrically control the com-
plex natural stimuli to which high-order sensory regions are
tuned, with the same precision and control that past studies
have manipulated more simple stimuli like white noise and
simple sine stimuli that can drive more primary sensory re-
gions.

Here we present a novel method to parametrize the natural
auditory stimulus space. We then apply classical behavioral
psychophysics to describe how starlings categorize motifs that
vary systematically within the parameterized space of their
natural song. Our method has the potential to reveal novel in-
sights into the representations of complex stimuli in secondary
perceptual regions. Currently, our understanding of these sec-
ondary perceptual regions is unsatisfactory and often, what is
known is a result of happening upon the precise stimuli that
drives a specific neuron such as in the case of the infamous
Jennifer Aniston neuron (Quiroga, Reddy, Kreiman, Koch, &
Fried, 2005). Our methods represent a way to traverse com-
plex natural stimuli spaces in a focused, quantitative, flexible,
yet rigorous manner.

Results

Unsupervised Parametrization Using a large corpus of
recorded starling song, a compressive Deep Belief Network



Figure 1: The set of 16 psychometric curves for a single bird.
Each psychometric curve is fit using the maximum likelihood
estimate of the probability of the bird choosing to respond right
as the stimulus is morphed from a left-associated motif to a
right-associated motif along the x axis. Note the large amount
of variability in where this bird places the categorical bound-
aries on different motif dimensions and the different slopes
(sensitivity) associated with each dimension.

(DBN) (Hinton & Salakhutdinov, 2006) is trained to autoen-
code 400 mS motifs (song segments) of starling song. The
DBN accomplishes a non-linear dimensionality reduction of
the starling motif corpus to a low dimensional latent space (64
dimensions), as well as providing a generative model from any
point in this latent space to a starling song-like sound. The
trained DBN allows one to interpolate between any two arbi-
trarily chosen starling motifs projected into the latent space, to
create a smoothly varying continuum of morphed motifs that
shift from one target motif to the other, without sounding like a
simple linear crossfade between them.

Behavioral Training Starlings are trained on a two alterna-
tive choice task where four arbitrarily chosen motifs (labeled A,
B, C, and D) are associated with a left response and another
four (E, F, G, and H), are associated with a right response. Af-
ter training to a stable performance criterion, the interpolated
morph motifs generated by the DBN are used to probe the
bird’s perception as each left-associated motif is transformed
into each right-associated motif. We employed a ratcheting
double staircase that allowed each subject to iteratively (and
independently) estimate the categorical boundary along each
of the 16 morph dimensions. A psychometric curve (four
parameter logistic function) is fit to the behavioral responses
along the entire morph dimension between a left-associated
motif and a right-associated motif.

In all cases, birds show very clear categorical perception
as evidenced by the steepness each psychometric function
regardless of subject or motif dimension. Comparing the
psychometric curves within a single bird across all 16 motif-
to-motif dimensions reveals a large amount of variation in
the point of subjective equality (the category boundary) and
in how sensitive the bird is to stimulus changes across the
boundary (Fig. 1). This variability across dimensions is pre-
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Figure 2: Psychometric curves for four starlings, over several
months of training, are highly conserved between individuals,
suggesting a shared perceptual space. The y-axis shows the
probability of a right response to a stimulus morphed continu-
ously between, for example on the left, motif B (reinforced as
left) and motif F (reinforced as right). The x-axis is the morph
point between the left associated motif to the right associated
motif.

sumably a result of the non-linear nature of the DBN song
compression and morphing. Thus, we can conclude that the
features the DBN uses to represent the motifs are perceptually
relevant to the starlings, and that the starlings are differentially
sensitive to variation along these different feature dimensions.

Despite the significant variability within a single bird across
multiple morph dimensions, we observed a remarkable de-
gree of consensus between birds. This included strong agree-
ment in where each bird placed the category boundary on a
given dimension, and in the sensitivity of all birds to changes
along a given stimulus dimension (slope of psychometric func-
tion). Figure 2 gives an example of the typical agreement be-
tween subjects, where two of the 16 morph dimensions are
plotted for 4 different birds. The left and right scaling parame-
ters are more conserved across all morphs within a single bird
indicating that they are bird specific parameters. This makes
sense because they correspond to the bird’s absolute perfor-
mance on the left and right endpoints. The category bound-
ary and the sensitivity are conserved within a given morph
dimension across different subjects indicating a shared per-
ceptual space of these synthetic natural-like sounds in these
wild caught birds.

The shared perceptual space for motif categorization may
result from either common training and experience, idiosyn-
crasies of the compressive network transformation, or some
combination of the two. To test for this, we permuted the ini-
tial motif category assignments for a subset of birds. Instead
of associating motifs A, B, C and D with left responses and
motifs E, F, G, and H with right responses, a new cohort of
birds learned, for example, to associate motifs A, B, E, and
F with left responses and motifs C, D, G, and H with right re-
sponses. Thus, a subset of the 16 interpolating morph dimen-
sions between left and right associated motifs is shared with
the original cohort’s interpolating morph dimensions. Com-
paring these shared boundaries demonstrates that on some
of the interpolated morph dimensions, both cohorts of birds
place the boundaries in same location as shown in the left of
figure 3 while in other interpolating morph dimensions each



morph pos
0.0

0.5

1.0
P
(g
re
at
er
 r
es

po
ns

e)
bc

morph pos

fg

subj
B1222
B1101
B1088
B1105

Figure 3: Psychometric curves from subjects trained on differ-
ent category permutations. B1222 and B1101 (green) were
trained to classify motifs ABEF as left and motifs CDGH as
right. B1088 and B1105 (purple) were trained on ABGH as
left, EFCD as right. This allows a subset of the morph dimen-
sions to be compared across training on different category
permutations. On most of these dimensions the boundary is
conserved as if the training was the same, however, on some
of the dimensions, the boundary depends on the initial cate-
gorical assignment. When it does shift, it shifts to the same
location for all birds.

cohort has a separate boundary (but consistent within that co-
hort), as shown in the right of figure 3. The boundaries that
are preserved across motif category permutation indicate that
these dimensions are independent from the other dimensions,
however, the boundaries that are shifted as a result of the mo-
tif category permutation indicate an interaction between the in-
terpolated morph dimensions. This is unexpected, especially
if one considers that in the latent space of the DBN there is
minimal collinearity and no discernable structure between any
of the 8 motifs used.

Another way to gauge the independence of the 16 interpo-
lation dimensions is to use the representation learned by the
DBN to predict the parameters of the behavioral psychomet-
ric function. Because we used the latent space to create lin-
ear, independent morphs, there isn’t enough information on
the relationships between the morph dimensions in the la-
tent space alone to predict behavior. Using the activations
of the entire DBN, however, can accurately predict (in a hold-
one-out paradigm) the psychometric boundary and slope. Be-
cause this is a completely determined system with no noise
we can show that the mean square error between the curve
predicted by the logistic regression and the behaviorally de-
termined psychometric curve is less than would be expected
if the psychometric curves are randomly shuffled. Thus, the
stimulus dimensions used for categorization are not indepen-
dent of each other. Knowing how the subjects treat one sub-
region of the latent space reveals information about how other
portions of the space are perceived.

Electrophysiological Recordings To explore how neural
representations of secondary auditory regions, such as CM,
varied along these morph dimensions we recorded extra-
cellularly from many single- and multi-neuron sites in CM si-
multaneously, in lightly anesthetized starlings. CM was tar-
geted using established stereotaxic coordinates and a 32-
channel silicon electrode was lowered into CM until neurons

Figure 4: tSNE embedding of the neural response of a pop-
ulation of putative units in CM of many repetitions of the
eight template motifs used in our initial operant conditioning
paradigm. Each of the 8 colors indicate a different motif. The
separation between each cluster indicates the distinct cate-
gorically separate representation of this neural population to
each of the motifs. Different intensity of color indicates nearly
identical spectrograms, but different random initializations of
the spectrogram inversion.

responsive to conspecific songs were observed. We then
presented a range of morph and training stimuli, selected so
that half of the presentations were equally spaced along each
of the interpolated morph dimensions and half were equally
spaced in perceptual space to ensure adequate sampling near
the relevant behavioral boundaries.

For each recorded neuron (sorted post-hoc) in the popula-
tion we convolved its spike train with a Gaussian to yield an
n-wise time varying estimate of firing rates on each trial that
preserved spike timing information, where n is the number of
simultaneously recorded neurons. A logistic regression is able
to very accurately predict the identity of the 8 training motifs
from most individual neurons in the recorded population re-
sponse, and provided an exclusion criterion to remove units
that did not contain much stimulus specific information (rele-
vant to our training motifs).

Visualizing the neural population representation (concate-
nating all the individual unit representations) of the presenta-
tions of the 8 original template motifs using tSNE reveals a
high degree of separation between clusters of different stim-
uli as seen in figure 4. Similar patterns are observed in naive
and trained animals, regardless of whether they’ve heard the
stimuli before the neural recording.

Using the hold-one-dimension-out prediction strategy, simi-
lar to that for the DBN activations, we predicted the behavioral
psychometric functions from the neural population represen-
tations. The behavioral response is fit given the neural repre-
sentation of stimuli presented from 15 of the 16 interpolated
morph dimensions and then the response is predicted on the
neural responses of the remaining dimension. A maximum
likelihood four parameter logistic function is fit on the predicted
responses of the trained logistic regression. The performance
of this method varied between recording sites and different
birds. We are still working on characterizing these differences



more in greater detail.

Discussion

Our results overcome a long-standing impediment to under-
standing the perception of natural communication signals. We
demonstrate a method for parametrizing complex stimuli and
generating smoothly varying morphs between these stimuli,
as well as how to use these morphs to explore the percep-
tual basis, behaviorally and neurally, of the natural stimulus
space. To our knowledge, this marks one of the first naturalis-
tic parametric explorations of non-human auditory communi-
cation signals. Our characterization of the perception of this
space and its neurological underpinnings, reveals remarkable
behavioral consensus between animals for categorical bound-
aries and a broadly distributed encoding strategy for categori-
cal stimulus information at the neural population level.

The field of machine learning is rapidly evolving and there
are number of possible improvements to the processing and
methodology, however, this work mainly demonstrates the
usefulness of these kinds of techniques for understanding the
perception of complex natural communication signals. In ad-
dition to changes in network architecture, newer implementa-
tions of spectrogram inversion would improve stimulus gener-
ation and are currently being tested and developed. In our ex-
periment, however, different initializations of the spectrogram
inversion process revealed that neurons in CM are sensitive
to these small physical differences in physical stimuli that are
imperceptible to human ears figure 4.

The work demonstrates the existence of a shared percep-
tual space, common across individuals, in which perceived
categorical boundaries cluster at consensus locations. This
kind of consensus is a pre-requisite to functional communi-
cation systems that use discrete signals. Furthermore, the
16 interpolating morph dimensions used in this study are not
independent, nor are they a simple linear function of the end-
points, independent of the structure of the network space. If
the latter were true, then all (or none) of the boundaries would
shift when the endpoints were permuted. Instead, because
only some of the dimensions are affected by permutation of
the initial categories, not all the dimensions are independent,
and the relationships between them are likely complex. More-
over, because there are dimensions that are not changed by
the permutation of the initial categories, the decision bound-
aries learned by birds cannot rely on simple separation of the
initial template motifs (as are seen in algorithms such as sup-
port vector machines or equivalent). Understanding where
these boundaries fall likely requires knowledge of how natu-
ral stimuli is distributed in the latent space of the network, and
the underlying geometry in which the latent manifold is em-
bedded. Additional work is needed in these areas.

Our ability to predict held out behavioral responses from
both the artificial neural network activations as well as the
in vivo neural population activities indicate that each of these
representations are sufficient, although not uniquely so, to de-
scribe the perceptual and behavioral space. One compelling

result is that the behavior generalizes across this stimulus
space, such that that knowing how perception acts in one sub-
region can inform behavioral responses in other sub-regions.
This category generalization also deserves further study.

The network representation decoding of the psychophysical
parameters indicates the importance of the distribution of nat-
ural songs on the perceptual space. While our library of songs
provides for an approximation of their natural experience his-
tory, it is limited, especially in the context of wild caught an-
imals. A fascinating future direction of this work would be to
see if changing the distribution of experienced song before the
training would influence category boundaries.

Finally, the fact that categorical behavioral responses can
be decoded from a randomly selected set of 10s of neurons
contributes to a growing body of work (Jeanne et al., 2011;
Kozlov & Gentner, 2016) that opposes the strongest version of
sparse hierarchical models of perception, where neurons with
simpler receptive fields converge onto neurons with a more
complex receptive fields until a complex percept, like Jennifer
Aniston emerges (Quiroga et al., 2005). Under this model, de-
coding a categorical behavioral measure (as we show here) is
only possible by matching the right stimuli to the right subset
of neurons. Thus, our results imply that the representation
of these secondary auditory regions is much more distributed
than would be predicted by a model where increasingly com-
plex features are encoded exclusively by single neurons.
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