
Oscillations in Stochastic Neural Computational Systems

Gary R. Engler (gengler@stevens.edu)
Department of Mathematical Sciences

Stevens Institute of Technology, Hoboken NJ, 07030

Michael Zabarankin (mzabaran@steves.edu)
Department of Mathematical Sciences

Stevens Institute of Technology, Hoboken NJ, 07030

Abstract
A network of neurons which which is used to get solu-
tions to the shortest path problem is augmented with an
inhibitory subnetwork which causes the network to ex-
hibit oscillations in the neural activity. These networks
are then investigated to determine how oscillations ef-
fect the efficiency of neural stochastic combinatorial op-
timization.
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Description
Oscillations are a prevalent phenomena in biological neu-
ral networks, associated with memory processes (Fell & Ax-
macher, 2011) and sensory perception (Busch, Dubois, &
VanRullen, 2009). More specifically oscillations in the 10 Hz
range have been observed in the hippocampus of rats and
other animals (Green & Arduini, 1954). These rhythms have
been shown to be correlated to the speed at which the ani-
mal is moving through the environment and have been argued
that they are a result of what the animal is doing, and not why
(Vanderwolf, 1969).

In simulated systems oscillations in network activity can be
observed by the interaction of inhibitory and exictatory neu-
rons. To investigate this phenomena further we use a network
structure based off of a stochastic neural system designed
to solve combinatorial optimization problems (Jonke, Haben-
schuss, & Maass, 2016). Using the shortest path problem as
a standard problem to solve we induce a stochastic spiking
neural network to solve the problem, discussed below in the
Appendix. With the network created we then investigate how
oscillations in the neural activity effect the manner in which the
network performs stochastic combinatorial optimization.

In the shortest path problem a multitude of potential path
lengths, in terms of number of edges, need to be considered,
the shortest path may include two edges or ten, and as a result
can result in complex network structure to be flexible enough
to deal with the scope of the solution space. The Traveling
Salesman Problem, while a more complicated computational
problem we know we must visit every node in the graph exactly
once except for the starting/ending node and leads to a more
straight-forward network construction.

This increase in neurons in the induced spiking network re-
sults in a increased chance of a cascade effect of neural activ-
ity to the point where the network states will no longer induce
a feasible graph for the shortest path. To tackle this problem

an inhibitory subnetwork is created with the intention of mod-
erating the activity of neurons within the network in general.
Depending upon the choice of connections and parameters to
the network in general various behavior can be observed, see
Figure 1. The different methods of finding the solution to the
problem have both advantages and drawbacks. We note that
oscillating networks tend to find induced graphs which con-
tain the solution to the shortest path faster than non-oscillating
networks, although during the upswing of the oscillation the in-
duced graph tends to become more complex than the induced
graphs in non-oscillating networks.

In a faster paced environment where a solution to the prob-
lem needs to be calculated quickly an oscillating network
could be optimal, especially if there are multiple copies of
the network running in parallel and looking at the graph inter-
section of the induced graphs to pare down the end resultant
graph to find the shortest path. This could be further investi-
gated by establishing a mechanism that would adjust param-
eters to increase or decrease the frequency of the oscillations
in response to the needs of the agent linked with the network.

Further research will investigate the frequency modulation
mechanism and how it impacts the performance of the net-
works in relation to both the shortest path through dynamic
networks as well as calculations for the constrainted shortest
path problem.

Appendix
Background
Suppose a neural network consists of N stochastic spiking
neurons, each of which is modeled by a stochastic process,
the shape of the postsynaptic potential is modeled by a rect-
angle given by,

xl(t) =

{
1 if neuron l spiked in (t− τ, t]

0 otherwise
(1)

Then neuron k ∈ {1, . . . ,N} fires a spike in a given time
span with probability

pk(t) =


1
τ

exp(uk(t)) if xk = 0

0 otherwise
(2)

where,
uk(t) = bk +∑

l
wklxl(t) (3)



Figure 1: Left graph: the construction of the inhibitory subnetwork induced oscillations in the neural activity. Right graph: the
choice of inhibitory subnetwork has a more gradual descent to the solution. The x-axis represents timesteps in the simulated
network, with one timestep representing roughly 1 millisecond.

models the membrane potential of neuron k. In (3), bk rep-
resents the bias of neuron k, which is the base likelihood of
firing, wkl is the strength of the connection between neurons
k and l, and xl(t) is the state of neuron l: xl(t) = 1 when the
neuron is active and xl(t) = 0 otherwise. The term wklxl(t)
models the postsynaptic potential (PSP) at time t that resulted
from neuron l firing at time t (Jonke et al., 2016).

The energy function of the network is then defined by

EN (x) =−
N

∑
k=1

bkxk−
1
2

N

∑
k=1

N

∑
l=1

xkxlwkl . (4)

It is known that the stochastic spiking neuron model (1)–(2)
with the energy function (4) satisfies the neural computability
condition (Jonke et al., 2016), in which case the stable distri-
bution of the network is given by

P(X = x) =
exp
(
−EN (x)

)
∑y∈X exp

(
−EN (y)

) . (5)

Since lower energy states will have a higher probability of
occurrence than higher energy states, the network should be
designed in such a way that the optimal solution corresponds
to the lowest energy state, thereby increasing the efficiency
of the search algorithm. Network structures and principles for
constructing networks of stochastic spiking neurons, in partic-
ular in application to the TSP, are discussed in (Jonke et al.,
2016).

Network Construction
For a given weighted graph G = (V,E,φ) in the SPP, a cor-
responding neural network is designed as follows. First, G
is augmented with two new vertices: source, S, and target, T ,
which are connected solely to the the source vertex and target
vertex in G, respectively, with zero edge weights.

Each vi ∈V is represented by the WTA-cluster Cvi consist-
ing of two identical WTA components, in which each neuron
represents a vertex adjacent to vi. Then with a continuous

Figure 2: Steps in network construction. Top Graph: Starting
graph. Middle Graph: Addition of source and target nodes.
Bottom Graph: Construction of general neural architecture.
See Figure 3 for final graph construction.



Figure 3: Final connection scheme for the induced stochastic spiking network. Source node on left and target node on right.

function f : E×E→R, the connection strengths of the edges
between WTA components is defined by

φi(n1
j ,n

2
k) =

{
f (e(vi,v j),e(vi,vk)) if i 6= j
I if j = k

(6)

where I < 0 is a constant inhibitory value.
Let

f (e1,e2) = 1− w(e(v1,v2))+w(e(v2,v3))

B
, (7)

where B is a constant normalizing value to ensure that
f (e1,e2) is positive for all edges.

Then each vertex vi ∈ G is replaced by Cvi , in which two
neurons are equivalent if they represent the same connection
in G. In Cvi , neurons are connected in an inhibitory manner to
equivalent neurons in the opposing component and connected
in an excitatory manner to the neurons in the opposing com-
ponent for the remaining adjacent vertices. In addition, two
single WTA components are added: one for the source S and
one for the target T —these are connected solely to their re-
spective WTA component representing the source and target
vertices. Let N denote the constructed neural network.

WTA components Cvi and Cv j representing adjacent ver-
tices vi and v j in G are connected as follows. If Cvi has neu-
ron nl ∈ N representing connection to v j, and Cv j has neu-
ron nm ∈N representing connection to vi, then nl and nm are
connected, and vice versa. The strength of this connection
is a fixed parameter D > 0 of the network and is chosen as
follows.

Suppose an optimal path contains two vertices vi and v j,
whose WTA components are Cvi and Cv j , respectively. If neu-

ron ni,2
j becomes active it sends an excitatory signal to both

neurons n j,·
i , one that becomes active sends an inhibitory sig-

nal to the other and an excitatory signal to the other neurons in

the opposite component, this signal should be inversely pro-
portional to the edge weight connecting the respective ver-
tices. Then with the energy function given by Equation 4, the
optimal path in G is found as in (Jonke et al., 2016).

The induced graph at time t, G(t) is the sub-graph that is
generated by network state vector x(t). An edge exists be-
tween vertices vi and v j in the induced graph if in the net-
work the neuron ni

j is active and neuron n j
i is active. Note

that network states and induced graphs have no one-to-one
correspondence, it is possible for different network states to
correspond to the same induced graph.
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