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Abstract

How does the neocortex learn and develop the founda-
tions of our high-level cognitive abilities? We present
a comprehensive framework spanning biological, com-
putational, and cognitive levels, providing a coherent
answer supported by data. Learning is based on making
predictions about what the senses will report at 100
msec (alpha frequency) intervals, and adapting synaptic
weights to improve prediction. The pulvinar nucleus
of the thalamus serves as a projection screen upon
which predictions are generated, through deep-layer
6 corticothalamic inputs from multiple brain areas.
The bottom-up, sparse, driving inputs from layer 5
intrinsic bursting neurons provide the target signal, and
the temporal difference between it and the prediction
reverberates throughout cortex, driving synaptic changes
that approximate error backpropagation, using only
local activation signals in equations derived from a
detailed biophysical model. We test this framework of
unsupervised predictive learning with a model of the
visual system that incorporates two central principles:
top-down input from compact, high-level, abstract repre-
sentations is required for accurate prediction of low-level
sensory inputs; and the collective, low-level prediction
error is progressively partitioned to enable extraction
of separable factors that drive learning of high-level
abstractions. Our model self-organized invariant object
representations of 100 objects from simple movies and
accounts for a wide range of data.
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Introduction

What is the nature of the remarkable neocortical
learning and maturational mechanisms that result in the
development of our considerable perceptual and cogni-
tive abilities? In other words, where does our knowledge
come from? Phenomenologically, it appears to magically
emerge after several months of gaping at the world pass-
ing by — what is the magic recipe for extracting high-
level knowledge from an ongoing stream of perceptual
experience? Answering this question has been the ulti-
mate goal of many lines of research, at many levels of

analysis from synapses to machine learning algorithms
and psychological theories. Despite many advances at
each of these levels of analysis, we still lack an over-
all framework providing a comprehensive answer to this
question. Here we propose such a framework, one that
provides a broad and deep integration of many different
sources of data. This biologically grounded framework
is implemented in a computer model that demonstrates
both its computational function and its ability to account
for a wide range of data.

Our core hypothesis, also advanced by other re-
searchers going back at least to Helmholtz in 1867 (von
Helmholtz, 2013), is that learning can emerge from the
largely passive sensory experience of babies because
each moment is an opportunity for predictive learning.
Underlying the seemingly passive behavior is an active
neural network generating predictions for what will hap-
pen next, and a process that drives learning from the
differences between these predictions and what actually
does occur. Within this general framework, several natu-
ral questions arise: How frequently are predictions gen-
erated and what stimulates their generation? How ex-
actly are the predictions compared with reality, and what
form does that critical difference (i.e., the prediction er-
ror) take, so that it can drive learning? And how can the
brain simultaneously represent both a prediction and the
sensory ground truth, without getting them mixed up?

Specific Hypotheses

Our specific hypotheses are as follows: Predictions
(in sensory posterior cortex, at least) are generated every
100 msec (i.e., the alpha rhythm), driven fundamentally
by deep layer 5IB intrinsic-bursting neurons which burst
at this frequency, entrained via circuits interconnecting
the neocortical deep layers with the higher-order sen-
sory thalamus (the pulvinar). We view this as a subcon-
scious process specifically for sensory predictive learn-
ing — other time scales and forms of predictive learn-
ing may occur in other brain areas. These predictions
are generated within the deep neocortical layers (5 and
6), based on time-delayed information from the prior
100 msec, and projected broadly onto the pulvinar tha-
lamic relay cells, via the numerous, weaker “top-down”
pathway from neocortical layer 6 (Sherman & Guillery,
2006). After about 75 msec of reflecting these top-down



predictions, the sensory bottom-up ground truth drives
the pulvinar, via very sparse, strong projections from the
5IB neurons in lower cortical areas (Sherman & Guillery,
2006), and this temporal difference reflects the prediction
error signal. Thus, unlike most other predictive / gener-
ative learning frameworks, we do not propose a popu-
lation of neurons whose activation explicitly reflects the
prediction error — instead the error is implicitly reflected
in the temporal dynamics of activation signals emanating
from the pulvinar.

The pulvinar projects broadly throughout the poste-
rior cortex, and this temporal difference at the alpha fre-
quency can drive learning throughout the cortex to im-
prove the accuracy of the predictions generated by the
deep layers. Furthermore, while the deep layers are
driving their predictions, the superficial neocortical lay-
ers are integrating bottom-up and top-down information
about the current state of both the environment and the
organism, and also learning to improve these represen-
tations via the same temporal-difference prediction er-
ror signal. Thus, we propose a clear anatomical sepa-
ration between the predictive (deep layers) and current-
time (superficial layers) representations in the cortex —
every alpha cycle, the superficial layer state provides the
input to the deep layers (again via layer 5IB bursting) that
will be used in generating the predictions for the next al-
pha cycle.

Predictive Learning to Develop Invariant Object
Representations

As for the question of how far predictive learning
can go, we focus on the widely-studied domain of in-
variant representations of objects. Such representations
are widely recognized as having great adaptive value to
an organism, and form the foundation of much of our se-
mantic understanding of the world. However, to develop
these representations models typically require training
with explicit, invariant category labels. If predictive
learning can be shown to form such representations in
a purely unsupervised manner (i.e., strictly through the
process of predicting subsequent sensory inputs, without
any additional high-level category information), then it
seems more likely that predictive learning could support
a reasonably wide range of higher-level cognitive learn-
ing. We explore this question in the context of a sim-
plified, analytic environment where one out of 100 dif-
ferent possible patterns moves in a random direction (or
remains still) while the model makes random saccades
every 200 msec. This captures the most basic aspects
of the visual world: patterns (objects) that are generally
stable over time but follow Newton’s first law of motion,
while also incorporating eye movements, which are the
main reliable form of motor control available to a baby.

We find that indeed invariant representations do form in
the highest layers in the model, corresponding to those
in inferotemporal cortex (IT) in the primate brain, and
demonstrate that these representations play a critical role
in the overall predictive learning process by compactly
and stably encoding the visual features present in objects
even as the spatial locations where those features appear
changes.

A Hierarchical Generative Model

Computationally, our framework is a form of a hi-
erarchical generative model, which have been widely
explored as models of brain / cognitive function (and
we restrict our discussion to that subset, broadly de-
fined, as opposed to the broader machine learning field).
These models are typically trained progressively from
the bottom-up (i.e., layer-by-layer), and according to a
relatively strict hierarchy where each layer learns to pre-
dict the behavior of the layer below it. We found this
approach to have significant limitations, and instead dis-
covered two critical principles that were necessary for the
development of systematic, high-level, abstract knowl-
edge representations in our model: 1. Compact, high-
level abstract representations are essential for accurate
prediction generation at the lowest levels, and thus there
must be extensive top-down short-cut projections from
the highest levels of the hierarchy down to the lowest
levels; and 2. The overall prediction error (broadcast by
the pulvinar as a temporal difference) must be progres-
sively and opportunistically partitioned by differentially-
specialized such high-level pathways, with simpler fac-
tors learned earlier and thus factored out from the overall
predictive error signal, thereby concentrating the efficacy
of the remaining signal for learning the other aspects of
the overall prediction problem.

Although many generative models are discussed in
terms of generating predictions, many of them do not ac-
tually include an explicit temporal divide, and instead
end up learning by reconstructing the current sensory
input (e.g., an auto-encoder in neural network terms).
These kinds of auto-encoders require various constraints
to avoid degenerate solutions, and it remains unclear
whether such models can produce systematic abstract in-
ternal representations in a purely self-organizing man-
ner (typically they are subsequently trained with stan-
dard explicit object category labels, for example). By
contrast, the task of predicting the future sensory input
avoids many of these problems because, as the saying
goes, prediction is difficult, especially about the future.

The DeepLeabra Predictive Learning Framework

In recognition of the critical predictive role of deep
neocortical layers, and the ability to train deep hierarchi-



Figure 1: Schematic illustration of the temporal evolu-
tion of information flow in a DeepLeabra model predict-
ing visual sequences, over a period of three alpha cycles
of 100 msec each.

cal networks, we refer to our computational model as the
DeepLeabra learning algorithm, building on our earlier
Leabra mechanism that performed the same temporal-
difference-based error-driven learning in bidirectionally-
connected networks, but previously based only on the su-
perficial layers of the neocortex (O’Reilly, Hazy, & Herd,
2016; O’Reilly, Munakata, Frank, Hazy, & Contributors,
2012; O’Reilly & Munakata, 2000; O’Reilly, 1996).

Figure 1 provides an overall schematic for how pre-
dictive learning takes place in our framework, showing
area V2 predicting the next pattern of activation on V1,
over the period of three alpha-cycle “movie frames”. The
V2 deep-layer neurons drive activation of a minus-phase
prediction over the pulvinar, and then in the plus phase
the 5IB neurons in area V1 drive the pulvinar with the
actual sensory input state, and the temporal difference
between the two represents the error signal that trains the
superficial and deep layers of V2 to create better rep-
resentations for making a more accurate prediction next
time around. This same cycle of prediction and training
occurs for all the layers of the visual system.

The neocortex in our model is composed of two sepa-
rable but tightly interacting sub-networks, the superficial
and the deep / thalamic (pulvinar). The superficial-layer
network consists of neocortical layers 4, 2, and 3, across
different brain areas, with extensive bidirectional inter-
connectivity (feedforward going from 2/3 to layer 4 in
the next area, and feedback coming from 2/3 in one area
back to 2/3 in an earlier area; Rockland & Pandya, 1979;
Felleman & Van Essen, 1991; Markov et al., 2014). The
superficial network represents the current state of the en-
vironment and internal state of the organism, at multiple
different levels of abstraction, all mutually interacting. It
can be described computationally in terms of a classic
Hopfield network / Boltzmann machine constraint satis-
faction system (Hopfield, 1982; Ackley, Hinton, & Se-
jnowski, 1985).

The deep / thalamic network starts in each area with
the layer 5b intrinsic bursting (IB) neurons (Connors,
Gutnick, & Prince, 1982; Sherman & Guillery, 2006;
Franceschetti, Guatteo, Panzica, Sancini, Wanke, &
Avanzini, 1995; Flint & Connors, 1996), which receive
inputs from local superficial neurons and top-down pro-
jections from other areas. These 5IB neurons then
project to deep layer 6, which interconnects with the tha-
lamus (which in turn projects back up to layer 4 of the
superficial network and layer 6 in the deep network), and
the 5IB neurons also provide a strong driving feedfor-
ward input to higher-area thalamic areas. The deep / tha-
lamic network in the posterior cortex is directly respon-
sible for generating predictions over the pulvinar. It must
be phasically shielded from the current state information
in the superficial layers, to be forced to generate a predic-
tion, as opposed to simply copying the current input state
(in which case it would become a simple auto-encoder).

The brief, phasic bursting of the 5IB neurons is
the essential mechanism in our model that ensures that
bottom-up, current-state information only penetrates the
deep layers phasically, not continuously, thus enabling
true predictions to be generated. During the minus phase,
when it is generating the next prediction, the deep state
reflecting the last 5IB burst of activity is sustained and
elaborated through regular spiking layer 6 neurons (i.e.,
layer 6CT corticothalamic neurons; Thomson, 2010) that
project to the thalamic relay cells (TRC) of the pulvinar,
which then project back to these same 6CT neurons (and
up to the layer 4 inputs to the superficial network).

Testing the Framework

To test the above predictive learning mechanisms, we
applied it to a simple visual prediction task with short
“movies” of objects undergoing constant self-motion,
and randomly directed saccades with an efferent copy of
the upcoming saccade motor plan. After the first frame
of such a movie the subsequent frames should be fully
predictable, so our first test was whether the model could
learn to accurately predict these subsequent frames. We
were also interested in the extent to which these same
predictive learning mechanisms could develop high-level
abstract representations of objects that can then provide
a more systematic basis for intelligent behavior. For ex-
ample, by developing invariant object representations, an
organism would be able to systematically respond appro-
priately to the presence of objects regardless of the per-
ceptual details in which that object was viewed. Figure 2,
shows decoding accuracy improving in higher visual cor-
tical layers without any supervised learning.

Overall, we found a strong correspondence between
the successful principles for improving overall network
performance, and known features of the biology. The ex-



Figure 2: Learning curves for full model, showing ac-
curacy (proportion error) in decoding the object features
from each of 3 different layers (V3, V4, TEO), and over-
all prediction accuracy in terms of minus vs. plus phase
cosine over the V1p pulvinar layer, at trial 3 (the last
trial), which is nearly perfect. Notice that TEO has devel-
oped much more systematic object representations than
other layers.

tent and depth of this correspondence suggests that struc-
tural and developmental properties of the mammalian vi-
sual neocortex may have evolved to support the same
kinds of computational principles of predictive learning.
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