
The many directions of feedback alignment

Brian Cheung (bcheung@berkeley.edu)
Redwood Center for Theoretical Neuroscience, BAIR

UC Berkeley

Daniel Lu Jiang (danieljiang@berkeley.edu)
Redwood Center for Theoretical Neuroscience

UC Berkeley

Abstract
Backpropagation is a key component in training neu-
ral network models which have been successfully ap-
plied to many perceptual tasks including vision and au-
dio. Despite this success, an analogous learning mech-
anism has yet to be discovered in biology. The feedback
alignment algorithm relaxes the constraints imposed by
the backpropagation procedure while still demonstrat-
ing successful learning in feedforward neural networks.
In this work, we further loosen the constraints of these
learning algorithms by removing the directionality con-
straint of the forward and backward paths. We show these
paths can be operated in a bidirectional manner to train
multiple networks without interference even when the net-
works are solving different tasks.

Keywords: learning; backpropagation; neural networks

Introduction
Neural networks have been shown to perform remarkably
well on a variety of machine learning tasks in various
domains. They have made substantial improvements in
speech recognition (Hannun et al., 2014), image classification
(Krizhevsky, Sutskever, & Hinton, 2012) and machine transla-
tion (Sutskever, Vinyals, & Le, 2014). Despite the wide vari-
ety of architectures used for these applications, these models
all share the same fundamental learning algorithm known as
backpropagation (Rumelhart, Hinton, & Williams, 1986). The
success of this training algorithm has raised the question of
whether biological neurons could be employing a similar pro-
cedure (Scellier & Bengio, 2017).

One hope of finding an appropriate analogy between artifi-
cial neural networks and their biological counterparts is the
possibility of discovering more robust and efficient learning
mechanisms. Recent work has investigated the properties
of learning as departures are taken from the standard back-
propagation algorithm (Jaderberg et al., 2016; Liao, Leibo, &
Poggio, 2016; Dean et al., 2012). Dean et al. (2012) showed
weight updates could be performed asynchronously. Going
further, Jaderberg et al. (2016) decoupled the relative order-
ing of forward and backward passes.

Feedback alignment (Lillicrap, Cownden, Tweed, & Aker-
man, 2016) has been a significant milestone in the path to
finding a learning algorithm that has comparable performance
with backpropagation in training multilayer neural networks
while also being less restrictive. In standard backpropagation,

the error signal is propagated through the feedback path via
multiplications by the transpose of the feedforward weights.
This requires a precise coupling between the weights in the
feedforward and feedback paths of the neural network, where
the weights along the feedback path must be exact symmetric
copies of the weights along the feedforward path. This cou-
pling is known as the weight transport problem and is believed
to be biologically implausible (Grossberg, 1987), because it
requires that the learned feedforward weights be ”transported”
to the feedback path in order to generate learning signals for
the neural network.

Feedback alignment offers a solution to the weight trans-
port problem in which the weights along the feedback path of
a neural network are randomly initialized and static. This sim-
ple solution removes the coupling constraint while still demon-
strating successful learning.

In this work, we go further by making the backward weights
dynamic and having them serve multiple purposes. Specifi-
cally, the backward weights serve:

• their original purpose as the backward weights for a neural
network

• a secondary purpose as the forward weights for a different
neural network

In contrast to the original feedback aligment algorithm, the
secondary purpose changes the backward weights over time.

Our hypothesis is that given the additional flexibility of feed-
back alignment in training a neural network, we can utilize the
backward weights to function as the forward weights for an-
other neural network. In our work, we show that despite the
multiple uses of the backward weights in a network, each net-
work still trains without interference from the other network.

Overview of Feedback Alignment
Feedback alignment has been empirically shown to train fully-
connected neural networks to a similar performance to stan-
dard backpropagation. The normal backpropagation formula-
tion for a given weight matrix is:

∂L
∂W l =

∂L
∂zl h(l−1)T (1)

which for a standard feedforward neural network with non-
linearity σ() is written out as:



zl =W lhl−1 +bl (2)

hl = σ(zl) (3)

∂L
∂zl = (W (l+1)T ∂L

∂z(l+1) )�σ
′(zl) (4)

where � is element-wise multiplication.
In feedback alignment, the transposed weight matrices

W (l+1)T in equation 4 for each layer are replaced by:

∂L
∂zl = (B(l+1)T ∂L

∂z(l+1) )�σ
′(zl) (5)

where B(l+1)T is a fixed randomly initialized weight matrix.
This random matrix relieves the constraint of backpropagation
where the transpose of the forward weight matrix is normally
needed on the feedback path of the network.
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Figure 1: Diagram of our bidirectional feedback method. Only
weights of the hidden layers are coupled to match in number
of units.

Recent work has shown that a significant fraction of the
parameters of a neural network can be removed after train-
ing without compromising accuracy (Han, Pool, Tran, & Dally,
2015; Frankle & Carbin, 2018). The work of Frankle and
Carbin (2018) suggests that many of the parameters in large
neural networks are only utilized for increasing the chances of
sampling a good initialization. Otherwise, these weights are
left unused during learning.

With this large fraction of unused parameters in mind, we
hypothesize that the backward weights of a neural network
trained with feedback alignment could be used for multiple
purposes without impacting the overall learning process of the
forward weights. If only a small random fraction of the back-
ward weights are used for one purpose, there is a low chance
that they would interact when co-opted for another purpose.
Rather than having the feedback weights carry only gradient
information to the lower layers of a neural network, we investi-
gate using these weights as the feedforward weights of a dif-
ferent neural network:
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Figure 2: Test accuracy during training of standard Feedback
Alignment (green), Coupled Backward (blue), and Coupled
Backward and Forward (orange) on the CIFAR-10 (top) and
MNIST (bottom) datasets.
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In contrast to the original feedback alignment procedure, the
backward weights Bl here are not kept fixed throughout learn-
ing. These weights are updated by another feedback align-
ment procedure to train a reverse network whose components
are denoted by the subscript r.

Backward and Forward Coupling In the previous section,
the reverse network possessed its own backward matrices Cl

which are randomly initialized and fixed (see Figure 1). We go
further to investigate whether coupling the backward matrix of
the reverse network to the forward network has any impact on
learning using feedback alignment:
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∂zl
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∂z(l+1)
r
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r) (8)

Experiments
We train two distinct 5 layer fully connected neural networks
with 1024 units in each hidden layer. One network is trained
on the CIFAR-10 task while the other is trained on the MNIST
task. To improve convergence speed, we center the pre-
activations across the feature dimension. This centering is
equivalent to multiplying by a fixed symmetric matrix in the
forward and backward directions. Aside from improving learn-
ing speed, we found this centering did not impact our results
or conclusions.

Results
We compare the accuracy during learning of standard feed-
back alignment with bidirectional feedback alignment. In stan-
dard feedback alignment, the forward and reverse networks
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Figure 3: Cosine similarity between weights in the forward and
reverse networks during training iterations for standard Feed-
back Alignment (green), Coupled Backward (blue), and Cou-
pled Backward and Forward (orange).

are independently learning over the CIFAR-10 and MNIST
datasets respectively. Figure 2 shows that coupling the back-
ward matrix of the forward network with the reverse network
converges at the same rate for both datasets. Furthermore,
fully coupling the forward and reverse networks (Backward
and Forward coupling) also converges at the same rate as
standard feedback alignment.

To determine if there are any interactions while simultane-
ously training the forward and reverse networks, we compute
the cosine similarity of the weight matrices of each coupled
layer which is shown in Figure 3. Unsurprisingly, when the
networks are uncoupled (standard feedback alignment), the
weights in all layers have nearly zero cosine similarity. In con-
trast, when the forward and reverse networks are coupled by
the backward matrix, the alignment between the weights in-
creases as training progresses. When the forward and reverse
networks are fully coupled, we see the greatest alignment dur-
ing training. Interestingly the alignment is larger in the earlier
layers when compared to the downstream layers.

Discussion

We show preliminary results demonstrating that the feedfor-
ward and feedback pathways in a neural network can travel
along the same connections, further relaxing the constraints
which were initially thought necessary for training neural net-
works architectures. Instead of keeping the backward weights
fixed during learning, we allow the backward matrix to be up-
dated to solve a different task. We show that this does not im-
pact learning performance of the original feedback alignment
algorithm.

We believe that tempering the restrictions of when learning
is feasible will lead to algorithms which are more resilient to
unforeseen changes and may make it easier to find analogies
in biology.
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