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Abstract: 

The world contains information over multiple timescales. 
For example, we must combine sequences of syllables 
to perceive a word, and sequences of words to 
comprehend a sentence. How does the brain process 
information over multiple timescales? Previous studies 
have demonstrated that higher-order brain regions are 
sensitive to temporal context on longer scales, and that 
they also express stable activity states over the duration 
of an event. We set out to model these neural phenomena 
using a hierarchical temporal auto-encoder (HTA). When 
augmented with mechanisms for a contextual reset, the 
HTA successfully reproduces neural phenomena. The 
HTA also generates a prediction regarding context 
construction: that low-level regions establish a new 
context rapidly, while higher order regions establish new 
context representations more gradually. We confirmed 
this empirical prediction by applying inter-subject 
pattern correlation to fMRI responses of sentences heard 
in different temporal contexts. Overall, we propose that a 
hierarchy of temporal auto-encoders is a feasible model 
of temporal information processing in the cortical 
hierarchy.   
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Background 

Information in the world is nested over multiple 
timescales: syllables compose words; words compose 
sentences; and sentences compose narratives. The 
human brain appears to employ a hierarchical 
architecture to process sequential structure across a 
range of scales (Hasson et al. 2015, Himberger et al. 
2018). This notion of hierarchical temporal processing 
in the human brain is supported by two key findings: 

1) the hierarchy of temporal context: responses in 
consecutive stages of cortical processing are sensitive 
to longer windows of prior stimulus context in higher 
order regions (Lerner et al. 2011).  

2) the hierarchy of neural dynamics: neural dynamics in 
consecutive stages of cortical processing are slower 

and more stable in higher order regions (Baldassano et 
al. 2017, Schapiro et al. 2013).   

We hypothesized that multi-scale sequence learning 
and perception are supported by a hierarchical 
computational architecture, in which each level acts as 
a temporal auto-encoder of its input (see also Chung et 
al. 2016). We formalized our hypothesis as a 
hierarchical temporal auto-encoder (HTA) and tested 
whether this model could reproduce the two key 
empirical findings noted above. We then compared our 
HTA model against an existing memory model 
(temporal context model, TCM) to test which 
computational elements are sufficient to account for 
hierarchical temporal processing in the human brain. 
Finally, we empirically tested a prediction of our HTA 
model regarding the timescale of context construction.  

 HTA and TCM 
1. Our HTA model consists of 
stacked auto-encoder units, 
inspired by the TRACX2 
sequence learning model 
(Mareschal and French 2017).  
Each layer of the model consists 
of an input unit (IN), a context 
unit (CNTX) and a hidden unit 
(HID) (Fig. 1). At each time step, 
the auto-encoder uses a linear-
nonlinear transformation to 
compress CNTX+IN. The result 
is a lower-dimensional 
representation stored in the HID 
unit. Each level of the model 
then computes a local 
“surprise” variable, which 
is the absolute difference 
between the CNTX+IN vectors and the “reconstructed” 
CNTX+IN extracted from the compressed HID 
representation.  
 
HTA has two key features: 
a. More local memory preserved at higher levels  
Change in CNTX units are modulated by decay 
(governed by a time constant  ) and surprise (α, at the 
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Figure 1 Hierarchical temporal 
auto-encoder (HTA) architecture. 



 

previous time point). At higher stages of processing, the 
CNTX units have longer time constants, and thus 
preserve more prior context. 

 
 
 

b. Feedforward information modulated by surprise 
Information is transmitted from lower levels to higher 
levels of the model (i.e. IN(2) is a function of the units at 
Level 1). The nature of input to stage N+1 is modulated 
by surprise α at stage N. If α is small, the model 
successfully synthesized IN and CNTX, and this 
synthesized information is sent to higher levels. 

 

2. Temporal context model (TCM) TCM is a single 
layer model, with an input unit (f) and a context unit (t). 
The model learns the association between input 
features and context units through updating the 
associative map (MTF, MFT) via Hebbian Learning. The 
updated context is a combination of the previous 
context and a context input (tIN) from input feature, 
modulated by parameter 𝜷  (Fig. 2). We modeled 
different processing timescales by modifying 𝜷 , the 
context decay rate. A manual parameter search 
indicated that β = 0.9, 0.7, 0.5 for Levels 1, 2 and 3 
provided the best match to empirical effects. 

 

 

Model implementations and comparisons 
1. Hierarchy of context dependence. First, we 
simulated the basic phenomenon that higher order 
regions are more sensitive to information presented 
further in the past, suggesting that higher order regions 
integrate information over a longer timescale (Fig. 3A, 
Lerner et al. (2011)). To simulate this phenomenon, we 
trained HTA and TCM with intact structured sequence 
and tested them with sequences that preserved either 
short or long timescales of the trained structure. We 
then computed  the similarity (correlation) of the 
representations of each test item in the scrambled 
context against its representations in the intact context, 

analogous to the experimental design of Lerner et al. 
(2011; Fig. 3B). HTA trained with structured sequence 
exhibited a functional temporal hierarchy: compared to 
the lower levels, the higher levels are more sensitive to 
changes of temporal context farther in the past (Fig. 3C, 
left). When the model was trained with shuffled data (no 
reliable temporal structure), the hierarchical context 
effects were reduced (Fig. 3C, right). We confirmed 
these observations with a repeated measures ANOVA, 
revealing large effects of of Model Level (1,2,3) and 
Training Type (structured vs. random), and the 
interaction of Level and Training Type (all F > 40, all p 
< 0.001). The same overall pattern was obtained when 
we examined a hierarchy of TCM models with different 
time-constants. However, we were unable to find 
parameters for TCM for which the higher levels of the 
model showed context effects as strong as those in 
HTA. Finally, we tested whether the context-reset effect 
contributed to the ability of the HTA model to learn multi-
scale temporal structure. We lesioned the model so that 
feedforward flow of information was no longer 
modulated by surprise (i.e. α=0 in Eq.2). The lesioned 
model exhibited reduced context dependence and 
increased reconstruction error (Fig. 3D). Thus, surprise-
modulated context reset is important for learning multi-
scale temporal structure in the HTA. 
2. Community structure at distinct timescales. 
Schapiro et al. (2013) showed that some higher-order 
brain regions are sensitive to temporal community 
structure – they come to represent “event structure” 
defined by non-adjacent associations in time. Thus, we 
tested whether HTA and TCM could generate such 
event representations when exposed to state-
transitions with a temporal community structure (Fig. 
4A). We trained both models with sequences sampled 
from a transition matrix with three communities, yet with 
equal transition probability (p = 0.25) from each node to 
its neighbors. Both HTA and TCM learned “event 
representations”: patterns of activity were more similar 
within temporal communities than between temporal 
communities. Furthermore, this effect was stronger at 
higher levels of the HTA and TCM models: community 
structure (block structures in Fig. 4B) was stronger at 
consecutive stages of the model, as within-versus-
between community correlation increased from Level 1 
to Level 3 (HTA: 0.41, 0.44, 0.69; TCM: 0.78, 1.05, 1.31) 
These results are consistent with the notion of a 
hierarchy of timescales in brain dynamics  (Baldassano 
et al. 2017). 
3. Summary of modeling. The HTA model reproduced 
two empirical phenomena of temporal processing in the 
human brain: hierarchical context sensitivity (Fig. 3) and 
representation of temporal community structure (Fig.   
4). TCM provided equivalent performance in extracting 
temporal community structure, but was less able to 
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Figure 2. Temporal context model (TCM) architecture 
and updating rules 
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generate distinct representations for sequences which 
differ many steps earlier (e.g. XABCDE vs. YABCDE). 
Our current modeling work is testing whether surprise-
driven context resetting is the key feature that enables 
HTA to perform well on both tasks jointly. 

Hierarchical Context Construction Effect 
Model Prediction. Our HTA model predicts that, 
following a context reset, lower levels of the model 
should re-establish context more rapidly than higher 
levels do (Fig. 6A). We refer to this phenomenon as the 
hierarchy of timescales in context construction. To test 

this prediction, we performed a similar analysis in fMRI 
data, measuring the timescale on which BOLD voxel  
patterns became aligned across different brains that 
were exposed to the same current input but had 
experienced a different prior context.  
fMRI Analysis Methods One group of 24 subjects 
listened to a 9-minute auditory story in the fMRI 
scanner, and another group (n = 24) listened to the 
same story scrambled at the scale of long sentences 
(mean = 21.9s, s.d. = 4.3s). Whole-brain inter-subject 
pattern correlation (ISPC) was performed on the fMRI 
data to measure the neural signal alignment within each 
sentence (Fig. 5A). In a set of 400 ROIs (Schaefer et al. 
(2017)), we measured ISPC across the subjects who 
heard the intact and scrambled stimuli. At each 
moment, the correlation across subjects quantified the 
alignment of brain states when processing the same 
sentence preceded by different contexts (Fig. 5B).  
Results We found that, when processing the same 
sentence preceded by different contexts, the neural 
responses became more aligned (higher ISPC) in the 
later part of the sentence. The low alignment at the 
beginning of the sentence is due to hemodynamic carry-
over from the preceding sentence. However, on top of 
this hemodynamic effect we observe variability in the 
time to align, consistent with a hierarchy of context 
reconstruction (Fig. 6B). As predicted by the HTA 
model, higher-order regions such as inferior parietal 
lobule (IPL) and posterior superior temporal gyrus 
(STG) became aligned more slowly, compared with 
lower order regions such as primary auditory cortex 
(A1+) and middle STG (Fig. 6B) 

Conclusion 
We tested the ability of a hierarchical temporal auto-
encoder (HTA) model to reproduce features of temporal 
processing in the human brain. The HTA successfully 
reproduced key empirical phenomena of hierarchical 
temporal integration in the human brain. Comparisons 
with the TCM model suggest that surprise-modulated 
context reset may enable the HTA model to better 
balance the trade-offs between the learning of strict 

Figure 3 (A) Information from short to long timescales 
is integrated in hierarchical structure of the brain. 
Different brain regions are sensitive to different scales 
of temporal context. (B) Sequences for training and 
testing the models (C) HTA generated hierarchical 
context dependence under structured training. Context 
effects were smaller in TCM and in models trained with 
random sequences. (D) HTA without feedforward 
context-resetting exhibited higher reconstruction error. 

Figure 4 (A) Community structure with equal transition 
probability from one node to adjacent nodes. (B) Both 
HTA and TCM generated hierarchical community 
structures. 



 

ordered relationships (local sequence structure) and 
the extraction of slow temporal associations (temporal 
community structure). Finally, we confirmed a 
prediction of the HTA model using fMRI responses 
recorded from participants listening to spoken 
narratives: following a sharp event boundary, early 
brain regions re-establish context representations more 
rapidly than higher-order regions. 
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Figure 5 Inter-subject pattern correlation (ISPC) analysis 
(A) ROI-wise ISPC was calculated at each time point. (B) 
ISPC was calculated across subjects exposed to intact 
and scrambled stimuli. Thus, we examined the moment-
by-moment neural signal alignment when hearing the 
same sentences in different contexts.   

 

Figure 6 (A) Higher levels of the HTA model take 
longer to synchronize, when comparing responses to 
the same input preceded by different contexts. (B) 
fMRI inter-subject pattern correlation results confirm 
the model prediction: higher-order regions synchronize 
more slowly across subjects exposed to different 
contexts. 
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