
Thalamic Modulation of Memory in Recurrent Networks 

 
P Stratton1,2  (pstratt@mit.edu) 

 

M Halassa2 (mhalassa@mit.edu) 
 

1 Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia. 
2 Dept of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. 

 

Abstract: 

During delay tasks, some neurons in the murine 
thalamocortical system (Schmitt et al., 2017) and 
hippocampus (‘time cells’) (MacDonald et al., 2011) 
display transient spike responses with timing that is 
repeated reliably across trials. In higher mammals and 
primates, activity in some cells is consistently elevated. 
These transient responses during delays confer a short 
term memory of the stimulus. We wondered what neural 
network structures could facilitate the generation of 
such dynamic memory patterns. We show that in a 
simplified formalism of a dynamic recurrently-connected 
network (DRN), the number of unique dynamic patterns 
grows exponentially with network size. The DRN 
formalism emphasises the role in neural function of 
transient yet repeatable dynamics. Unlike reservoir 
networks, the connectivity matrix does not need to be 
finely tuned (random connectivity suffices), and the 
dynamics implement indefinite (not fading) memory. 
Gating of input patterns is assumed to be controlled by 
modulatory signals from the thalamus. In particular, 
recent experimental evidence suggests that inputs from 
the MD thalamus convey contextual information and can 
modulate cortical synaptic strengths. We show in a 
spiking neural network model that MD modulation of 
synaptic strength can indeed stabilize dynamic patterns 
of activity and hence short term memories. 
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Methods 

For initial investigations, we used a reduced network 
model that iterated activity through a random matrix (Fig 
1). This allowed us to quickly test the effects of network 
size, activity level, and connection sparsity on: 

1. The number of discrete reachable states. 
2. The lengths of the generated sequences of activity. 

Subsequently, we used a randomly-connected 
recurrent spiking network to show that the result also 
held for realistic networks of neurons. The simulated 
network contained 1000 integrate-and-fire (I&F) 
excitatory neurons (resting potential = 0, spiking 
threshold = 1, membrane time constant = 20 ms, 
connection probability = 0.5, connection weight = 0.01, 
synaptic time constant = 20 ms) and 250 I&F inhibitory 

neurons (resting potential = 0, spiking threshold = 1, 
membrane time constant = 10 ms, connection 
probability to and from excitatory neurons = 0.05, 
connection weight from excitatory neurons = 0.2 with 
time constant = 5 ms, and to excitatory neurons = -0.2 
with time constant = 3 ms). Network activity was 
initiated at t=0 with spikes in a random selection of 
excitatory neurons, after which deterministic chaotic 
activity was self-sustaining. 

 

Figure 1. Reduced model. A network of n neurons is 
recurrently connected through an n x n weight matrix. 
An iteration through the depicted update loop proceeds 
as follows: 1) A 1 x n activity vector represents all the 
neurons that just spiked as 1’s and the remainder as 
0’s. 2) The activity vector is multiplied by the weight 
matrix to obtain the 1 x n result. 3) The top k neurons 
are deemed to emit a spike with the remainder assumed 
to be silenced by lateral inhibition (max() function). 4) 
The activity vector is updated with the neurons that just 
spiked and the next iteration follows. 

Results 

Reduced Model 

Using the reduced model, we first investigated networks 
of between 5 and 500 neurons, with between 0.1% and 



10% of neurons active at each step (1 step was 
equivalent to once around the activity update loop 
depicted in Fig 1). For these results, the network 
connectivity was set to 100% (all-to-all). 

The theoretical maximum number of unique activity 
patterns for any given network is nchoosek(n,k) where 
n is the number of neurons and k is the number active 
at each step. For a network of n=500 neurons with 10% 
active (i.e. k=50) there are more than 1060 possible 
patterns. 10% activity equates to a 5 Hz average firing 
rate if we assume there are 50 steps each second. At 
this rate, even for such a relatively small network, it 
would take approximately 1040 universe lifetimes to 
discover all the patterns. However not all patterns are 
dynamically accessible; that is, they cannot all be 
reached by cycling through the weight matrix as in Fig 
1. This is because the number of theoretically possible 
states grows combinatorially with the number of 
neurons, but the number of weights only grows 
quadratically, so the number of reachable states is 
significantly less than the naïve maximum, and the 
discrepancy is larger for larger networks. Additionally, 
states are not independent since all state transitions 
utilize the same weight matrix. To test these ideas, we 
generated all possible patterns for networks where the 
total number of possible patterns was 107 or less, and 
iterated them through a random weight matrix to see 
how many of the transformed patterns were dynamically 
accessible. Fig 2 (top) displays this as a percentage of 
all possible patterns for each network. We can see that 
the percentage of all possible patterns that were 
dynamically accessible decreased for larger networks, 
but that the decrease was significantly slower for 
sparser activity patterns. Sparse activity patterns 
therefore more efficiently use the range of the 
dynamically accessible state space of recurrent 
networks. To the best of our knowledge, this is a 
previously unrecognized advantage of sparse activity in 
recurrent networks. 

To test the length of the sequences that could be 
generated, for each reduced-model network we created 
1000 random starting patterns, then iterated each 
pattern through a random weight matrix 100 times (to 
simulate 2 seconds of activity at 50 steps/sec). If a 
pattern was repeated during these iterations, this was 
deemed a conflict, the iteration was stopped and the 
length of the cycle up to the conflict was noted. Fig 2 
(bottom) shows the minimum cycle length for each 
network over the 1000 starting patterns. To reliably 
retrieve memories from dynamic patterns of activity, it 
is important that no cycles intersect within the required 
memory storage time. We can see that a network of 500 
neurons with 1% activity (ie k=5) had a minimum cycle 
length of only 100 steps (Fig 2 bottom, light orange 
markers). However, by extrapolation, simply doubling 
the number of neurons (ie to n=1000, k=10) increased 

the minimum cycle length to approximately 106 (light 
orange fit line). Assuming 50 steps/sec, this equates to 
at least 5 hrs of continuous unique non-overlapping 
pattern generation using random synaptic weights. 
Extrapolating further, approximately only 1600 neurons 
would give a minimum pattern length of 1011, which is 
sufficient to produce 50 unique patterns every second 
for the average human lifespan of 75 years. 

 

 

Figure 2. Effects of network size and sparse activity 
level on patterns of dynamic activity. 

Sparse Connectivity 

Next we investigated the effects of sparse network 
connectivity. Sparse connectivity greatly reduced the 
minimum cycle length (Fig 3) and the percentage of 
accessible patterns (data not shown). However, the 
difference was smaller for networks that simultaneously 
used sparse activity patterns with sparse connectivity 
(1% active neurons per step – Fig 3 left) compared to 
those that used dense activity patterns (10% active 
neurons per step – Fig 3 right, where, for example the 
difference between 0.01 connected and 1.0 connected 
networks was much larger). This is potentially another 



advantage of sparse activity – relatively more of the 
dynamic state space is accessible when under a sparse 
connectivity constraint. 

Noise and Thalamic Modulation 

The addition of noise spikes to the activity patterns 
immediately caused the patterns to deviate from their 
desired trajectories, which would clearly be catastrophic 
for the dynamically-maintained memories. However, as 
long as activity patterns were sparse and not all 
neurons were involved in any given trajectory, a desired 
trajectory could be rescued by increasing the weights of 
the connections between all the neurons involved in that 
trajectory (Fig 3). There is evidence that this transient 
weight increase is controlled by modulatory 
connections from the MD thalamus (Schmitt et al., 
2017). The thalamus appears to provide a context 
signal which selectively increases the weights between 
neurons involved in maintaining the memory that has 
been learned to be relevant for that context. All synaptic 
connections that are involved at any time in a given 
trajectory are potentiated simultaneously. Sparse 
activity is therefore a critical component in rescuing 
noise-induced degradation of the memory patterns, 
since sparsity allows weight modulation to have a 
selective rather than a broad effect on network 
dynamics (i.e. if all neurons were involved in a given 
trajectory, then weight modulation would increase all 
synapses, and would not be selective for just the 
intended trajectory). 

Sustained Activity and Thalamic Modulation 

Unlike in rodents, where memories are stored in 
transient activity patterns, memories in higher 
mammals and primates are often stored through the 

consistent elevation of activity in selected cells. We 
tested the ability of the reduced model to maintain 
sustained elevated activity in a random selection of 
neurons; model parameters were unchanged except 
that the modulated weights were constrained to the 
diagonally symmetric recurrent connections between 
the selected neurons. In this case, sparse activity and 
sparse connectivity were detrimental to the ability of the 
network to sustain the activity (Fig 4), since randomly 
selected neurons are unlikely to be connected if 
connections are sparse, and hence cannot sustain each 
other’s firing. We tested this result on a realistic network 
of spiking neurons. A network of 1000 excitatory 
neurons connected with probability=0.5 and with 
approximately 10% of neurons active at each step (in 
Fig 4, the bottom-left panel contains the relevant 
parameters) could sustain activity in a random selection 
of neurons (Fig 5). 

Conclusion 

These results identify the minimum sufficient neural 
resources for dynamically storing memories through 
delay periods, and reveal that, when discounting the 
effects of noise, even modestly sized networks can 
store memories uniquely for practically arbitrary 
durations. However, when noise is introduced, patterns 
are destroyed unless there are neural mechanisms in 
place to counteract this effect. One possible 
mechanism is the modulation of synaptic weights, and 
it is possible that projections to the cortex from the MD 
thalamus play this role. Overall, our work posits 
conserved Thalamic involvement in cortical short term 
memory dynamics, but that in higher mammals, 
recurrent local cortical feedback may result in the 
emergence of dynamic changes in spike rate rather 
than temporally sparse sequences seen in rodents. 

Figure 3. Minimum rescued cycle length with 10% noise (i.e. 1 noise spike for every 10 memory spikes) as a 
function of connection probability and number of neurons; dark regions show where patterns were not rescued 
(i.e. succumbed to noise) while light regions show where patterns were rescued when relevant connections 
were modulated up 2.0x. 
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Figure 4. Ability of a network to sustain elevated activity in a random selection of neurons as a function of 
connection probability, number of neurons and percentage of active neurons at each step; dark regions show 
where patterns were not sustained while light regions show where patterns were sustained when relevant 
connections were modulated upwards 2.0x. 

Figure 5. Thalamic modulation of connection weights causes sustained activity in a spiking network model. 
Connections between two randomly-selected groups of neurons were modulated up by 2.0x for 500 ms each. 
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