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Abstract: 
 
To gauge whether a tower of objects will fall, are visual 
heuristics sufficient? In this study, we explore the potential 
of pattern recognition as a viable model of intuitive physical 
inference in a task that requires observers to estimate the 
stability of stacked building blocks, comparing the 
performance of a deep feedforward convolutional neural 
network to human performance using psychophysics. In 
analyzing human and machine behavior alike, we identify a 
pair of image-based visual features that strongly predict both 
human and machine performance and differ only in the 
summary statistic used to compute them. Our results suggest 
that a system trained only to recognize patterns in visual input 
and given no explicit physical knowledge (e.g. mass, gravity, 
friction or elasticity) is nonetheless capable of approximating 
human judgments in a paradigmatic intuitive physics task. 
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Introduction 
If ever you’ve played Jenga—or the more quotidian versions 
of Jenga that involve stacking dishes in an already 
overflowing sink and wrestling with seasonal decorations 
atop a teetering ladder—you’ve relied on a competence in 
physics you most likely weren’t even aware you possessed. 
Navigating a world of complex objects in complex 
interactions requires a finely calibrated sense of the physical 
contingencies that define these interactions, a psychological 
savvy often referred to as ‘intuitive physics’. While our 
capacity for physical inference is well-established by 
empiricism and Jenga alike, the computational architecture 
undergirding this capacity remains a matter of debate.  
 
 One class of theory proposes a system of structured 
knowledge and approximation, analogized as the sort of 
computer graphical game engine deployed in the realistic 
simulation of physical events in real time (Battaglia and 
Colleagues, 2013; Ullman and Colleagues, 2017), wherein 
explicitly physical knowledge is leveraged to explicitly 
model a diversity of physical scenarios.  

 
 An alternative to this “intuitive physics engine” is the sort 
of general purpose pattern matching model exhibited most 
conspicuously in deep neural networks (Lerer & Colleagues, 
2016). These models reformulate physical inference as 
statistical inference: the extraction of trends in visual features 
that correlate with physical outcomes.  
 
 Here, we explore the potential of pattern matching in a 
paradigmatic intuitive physical inference task (the block 
towers task), supplementing previous comparisons (Zhang & 
Colleagues, 2016) with a more controlled set of stimuli that 
afford us greater insight into the representations undergirding 
both human and machine performance. 

 
Methods 

Stimulus Set Adapting a technique specified by Zhang and 
colleagues (2016), we generated an image dataset of stacked 
blocks, all of the same size (1m3), with enough horizontal 
jitter in each block’s position that towers have a 50/50 chance 
of falling. We varied the number of blocks from 2-5 with 
200,000 images per tower size. The groundtruth for whether 
a tower will fall can be determined by computing for each 
junction of blocks the mean position (centroid) of all the 
blocks above the junction and comparing it to the centroid of 
the block beneath. If the centroid of the blocks above extends 
beyond the edge of the block beneath (at any junction), the 
tower will fall. Importantly, for both training and test sets we 
apply jitter only along one dimension (such that the variance 
is fully visible when facing the towers directly). In the 
training set, we allow some variance in the camera (see Zhang 
& colleagues (2016) for details), but for the test set situate the 
camera directly in front of the blocks, with the camera 
focused at the tower’s center. 

 
Hypothesized Features For each stimulus in the test set, we 
considered 12 hypothetical features a human or machine 
might use to accomplish the task. The features differ in 
whether they emphasize local information, or statistical 
information aggregated over multiple local measurements. 
These features are as follows: 



• Configural deviation: the mean and max values for the 
distance of each block from the centroid of all the blocks 
above it — the most direct approximation of 
groundtruth in our set of features. 

• Local (pairwise) deviation: the mean and max values for 
the distance of each block in the tower from the block 
above it, irrespective of other blocks.  

• Global deviation: the mean and max values for the 
distance of each block from the centroid of the tower.  

• Number of instabilities: the number of junctions in the 
tower shown by groundtruth calculations to be unstable.  

• Percent unstable: the number of unstable junctions in the 
tower as a proportion of the total number of junctions. 

• Horizontal extent: The horizontal distance from the right 
edge of the rightmost block in the tower to the left edge of 
the leftmost block in the tower: the tower’s width. 

• Vertical extent: The vertical distance from the bottom 
edge of the bottommost block to the upper edge of the 
uppermost block: the tower’s height. 

• Alignment distance: the numerically determined 
minimum distance each block must be moved to return the 
tower to a perfectly stable configuration, wherein each 
block is perfectly aligned with the others.  

• Minimum distance to stability: the minimum each block 
must be moved to return the tower to a minimally stable 
configuration, wherein there are no unstable junctions. 

Each feature is quantifiable in the sense that it constitutes 
some property of the visual array and differs across 
exemplars but contains no explicitly physical information 
(e.g. the mass of the blocks, or the force of gravity).  
 

Results 
We first benchmarked our test set on humans (via Amazon 
Mechanical Turk), with a two-choice forced alternative, 
asking whether the tower in a given image was stable or 

unstable. Human performance was generally high for any 
number of blocks in the range we tested (from 87% with 2 
blocks, to 82% with 5 blocks).  
 
 Next, we tested the performance of a neural network 
(VGG16) pretrained on ImageNet, refitted with a binary 
classifier (‘stable’ or ‘unstable’) and finetuned with 100,000 
labeled exemplars of three block configurations from the 
training set. Neural network performance was comparable to 
human performance; trained only on 3 block configurations, 
the machine performed well with test towers of the same size 
(91%), and generalized successfully to 2, 4 and 5 block 
configurations with only a minor decrement in performance 
(in chi-square tests comparing proportion of successes to 
chance, all p-values < .0001; 2 Blocks:  χ2 (1) = 78.12, 4 
Blocks: χ2 (1) = 91.25; 5 Blocks: χ2 (1) = 47.05).  
 

To assess the degree to which humans and machines agreed 
on which towers were stable and which were unstable, we 
compared the pattern of responses to each individual display 
(200 per tower size). Human agreement was quantified as the 
mean of a correlation computed separately for each 
individual subject (against the average response of the other 
subjects). A similar agreement humans and machines was 
computed by iteratively removing one subject from the pool 
and correlating the machine’s results with the average of the 
pool remaining. The results manifest a high degree of 
agreement between human and machine across the individual 
displays, with an average intersubject correlation of .76 and 
average human to machine correlation of .66. The network’s 
predictions correlate with human judgments as well as would 
a human’s judgments if that human had the same overall 
performance as the network (see Figure 1B): In general, as an 
individual human’s performance increased, their 
performance correlates more closely with the rest of the 
humans; the network’s performance exhibits a similar trend.  

 

  
Figure 1 (A). Human and Network Performance on the Block Towers Test Set. Error bars are 95% confidence intervals. 

(B) Correlations between humans and machine across overall percent correct. 
 



To gauge the features most predictive of performance for 
humans and machine alike, we used random forest variable 
importance metrics (Archer & Chimes, 2009), a method of 
analysis that allows us to highlight each feature’s influence 
on behavior. The most important variable in terms of 
predicting human performance was a feature we labeled the 
‘maximum configural deviation’—the maximum horizontal 
distance between the centroid of any one block in the tower 
and the centroid of all blocks above it (mean decrease in 
accuracy of 19.49%; mean decrease in Gini of 814.96). 
Critically, this feature is a direct approximation of the 
groundtruth (see Methods), suggesting that humans place the 
most emphasis on the optimal information for judging tower 
stability. In contrast, the most important variable in terms of 
predicting machine performance was the ‘mean configural 
deviation’—the mean horizontal distance between the 
centroid of any one block and in the tower and the centroid 
of all blocks it (mean decrease in accuracy of 40.63%; mean 
decrease in Gini of 106.14).  

 
To illustrate that humans place greater emphasis on the 

optimal feature (the maximum configural deviation), we plot 
both the human and network responses as a function of the 
maximum configural deviation (see Figure 2). Each point on 

the plot represents the response to an individual stimulus. For 
humans, we plot the average response across participants to 
each individual test image. For the neural network, we plot 
the neural network output, which corresponds to the 
probability that the tower is stable. Because the maximum 

configural deviation is an optimal feature for the block towers 
task, we are able to draw the groundtruth value directly on 
the x axis, with all stimuli to the left definitively stable and 
all values to the right definitively unstable. A perfect observer 
would produce a step function at this point. The shallower 
curve from the model fit on the output from the machine 
suggests the machine’s responses were less acutely tuned to 
the maximum configural deviation overall. 

 
Finally, as confirmation of the random forest variable 

importance measures, we fit binomial logistic regressions for 
each of the features calculated, regressing the human 
prediction (0 or 1) or machine’s prediction (a value bounded 
at 0 or 1 based on the machine’s confidence, and binarized by 
rounding) over the feature value, and computed the area 
under the curve of the receiver operating characteristic 
(abbreviated as AUROC; Hanley & McNeil, 1982). The 
mixed effects logistic regression of human judgments 
(‘stable’ or ‘unstable’) on the maximum configural deviation 
produced an AUROC of .944. The standard logistic 
regression of the machine’s predictions on the mean 
configural deviation produced an AUROC of .945.  These 
serve as confirmation that the most important feature 
designated by the random forest algorithm is also the best 
performing (the most ‘sensitive’) in terms of diagnosing 
whether the subject will label a given configuration as 
‘stable’ or ‘unstable’. 
 

Discussion 
Convolutional neural networks are quintessential pattern 

recognition systems—designed to find regularities in visual 
input that reliably associate with some prespecified output. 
That such a system is able to perform at or above human 
levels on the same block towers task suggests that the 
information inherent to the visual array is sufficient for 
categorizing various configurations of objects as stable or 
unstable—and that explicit physical knowledge (e.g. mass, 
gravity, friction and elasticity) are not obligatory when 
performing feats of physical inference. To say that the sort of 
pattern recognition engendered by neural networks is a viable 
model of intuitive physics (and not just a universal 
approximator), however, we must also evince some measure 
of similarity to human behavior, in cases of both error and 
accuracy. Here we have shown that human and machine 
make similar judgments of stability across exemplars, and 
that those judgments are predicted by similar features of the 
stimulus—features that could in principle be computed 
directly from the visual input. And crucially, though our task 
is markedly constrained, those singular parameters (mean 
and max configural deviation, respectively) account almost 
perfectly for the variance in performance across both our 
subject types. No explicitly physical model is required. 

 
Equally crucial is this: When it comes to performing a task 

like the block towers task, not all features are created equal. 

Figure 2. Psychophysical curves of human and machine 
performance in the block towers task predicted by the 
maximum configural deviation. On the x axis is the 
maximum configural deviation, ranging from perfectly 
stable at the lower end to very unstable at the upper end. 
On the y axis is the machine’s prediction or the proportion 
of subjects choosing ‘stable’.  
 



Attention to irrelevant dimensions of a stimulus (the color of 
the blocks, for example) will inevitably degrade performance 
unless that dimension serves as some indirect proxy of the 
groundtruth value. (Color in this case was almost certainly 
irrelevant—assigned randomly at rendering from a 
prespecified pallet). Out of a dozen features computed on 
every exemplar, from the relatively simple (local deviations) 
to the more sophisticated (numerically minimized alignment 
optima), the feature most predictive of human performance 
appears to be a feature that actually gives direct groundtruth 
access to the stability of the tower: The maximum configural 
deviation is optimal in the sense that it underscores the most 
unstable junction in the tower, which (if unstable past a 
certain threshold) determines the stability of the tower as a 
whole in terms of whether or not it will fall.  

 
This is particularly consequential when we consider the 

performance of the machine. Unlike the human subjects, the 
machine’s answers seem best predicted by the mean 
configural deviation, which—unlike the maximum configural 
deviation—does not give direct access to the groundtruth 
stability of the tower, since two or more deviations in the 
opposite direction are sometimes averaged in a way that 
wrongly suggests stability.  

 
Nevertheless, that the machine’s answers are indeed 

predicted by configural information suggests they are able to 
extract at least a portion of the overall pattern necessary to 
perform to par in the block towers task. 

 
The discrepancy between human and machine provides a 

target for future improvement. By further investigating how 
people perform the task, we can further refine the network. 
For instance, one speculative possibility (if we interpret the 
maximum configural deviation a bit more intuitively as the 
most prominently disjointed block in the tower) is that the 
optimal feature is also the most salient feature in terms of 
capturing a human observer’s attention. Humans may be 
benefiting from the ability to selectively attend to the optimal 
features of the visual array, filtering out irrelevant (and 
potentially) contradictory information. If this were the case, 
then equipping the machine to attend more specifically to 
various features of the tower may benefit the machine in 
equal measure, both in this task and in others. 
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