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Abstract

The ventral tegmental area (VTA) and its dopaminergic
projections are central to volitional behavior. Previous
research from our group demonstrated that individuals
can use real-time neurofeedback training to learn to re-
liably self-activate the VTA using self-generated motiva-
tional imagery (MacInnes, Dickerson, Chen, & Adcock,
2016). The mechanism of learning, however, is not yet
known. Here, we investigated how the temporal structure
of neurofeedback training impacts successful transfer of
VTA self-activation. We analyzed veridical VTA neurofeed-
back during self-activation trials in one of three tempo-
ral contexts (individual trial, scanning run, or full train-
ing session) to test the extent to which slope of VTA re-
sponse over time during each context explains change
in self-activation ability. A comparison of the model evi-
dence suggested that, relative to trial and run, the full ses-
sion best explained the magnitude of transfer from pre- to
post-training (p < 0.01). These preliminary data suggest
that the overall training context may be a better predictor
of learning from VTA neurofeedback than individual train-
ing episodes—regardless of their success.
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Introduction

Biofeedback is a powerful tool for providing individuals insight
into physiological states, creating a salient context for learn-
ing. Recent advances in neurofeedback techniques, such
as real-time functional magnetic resonance imaging (rtfMRI)
neurofeedback, offer new opportunities for shaping individ-
ual behavior using non-invasive interventions, although learn-
ing mechanisms are poorly understood (Sulzer et al., 2013).
Through ’cognitive neurostimulation’ (CN), or the use of self-
generated thoughts and imagery to non-invasively engage
neuromodulatory systems, individuals are able to use rtfMRI
neurofeedback to learn to volitionally sustain activation of
dopaminergic circuits (MacInnes et al., 2016). With this tech-
nique, individuals gain access to the neurobiological sus-
btrates of motivation and volitional behavior (Salamone &
Correa, 2012; Jahanshahi, 1998), using this information to
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learn to increase activation of the VTA as well as mesolim-
bic functional connectivity in the absence of external rewards
(MacInnes et al., 2016). This new insight into the biological
basis of motivational experience may be particularly impact-
ful for translational efforts for enhancing individual health and
well-being, as volitional, self-generated motivational states are
closely linked to therapeutic success (Ryan & Deci, 2008) and
may be required (Gneezy, Meier, & Rey-Biel, 2011; Bandura,
1991) for sustainable behavior change (Schwarzer, 2001).
Understanding how individuals learn to use VTA neurofeed-
back, therefore, is critical for establishing the efficacy of CN
and developing it further as an intervention. In the present
study, we investigated this question by testing the extent to
which the neurofeedback context itself—rather than any spe-
cific strategy—predicted learning.

Methods
19 right-handed individuals (9 female, mean age = 24) with
no history of psychological or neurologic illness or MRI con-
traindications participated in this experiment as part of a larger
study, which was approved by the institutional review board of
Duke University. Participants and full experimental parame-
ters are detailed in (MacInnes et al., 2016).

Figure 1: Cognitive neurostimulation task.

Neuroimaging of the CN Task The CN task consisted of
two types of runs: test (Pre-Test and Post-Test) and train-
ing (as in Figure 1); only training runs included rtfMRI neu-
rofeedback. Briefly, test runs were identical and included two



trial types: activate and count. In activate trials, participants
were instructed to get themselves into a heightened mental
state of motivation using self-generated positive phrases and
personally-relevant imagery or memories. Importantly, indi-
viduals were told to use only one strategy per trial and were
provided with minimal guidance about how to sample moti-
vational imagery/strategy space. In count trials, participants
counted backward from 300 in increments of four. Each trial
type was repeated five times and trial order was randomized.
The training runs included three trial types: activate, count,
and rest. For activate and count, instructions were the same
as in the test runs, although activate trials now included a dy-
namic graphical thermometer display that presented real-time
neurofeedback from the VTA. During rest, participants were
instructed to rest and not think of anything in particular and
saw a graphical thermometer that displayed random feedback.
Again, each 20-s trial type was repeated five times in each of
three runs (15 total trials per type). In both test and training, all
trials had a duration of 20 s and were separated by a jittered
ITI.

MR imaging data were collected using a GE MR750 3T
scanner; physiological data (heart rate and respiration) were
also collected during imaging. Functional imaging data
were acquired using an echo-planar imaging sequence with
partial-brain acquisition (18 oblique slices oriented to the
AC-PC line) using the following parameters: TR = 1 s, TE
= 28 ms, 90◦ flip angle, 3 x 3 x 3.8 mm voxel size. One
30-s resting state run was also acquired using these param-
eters; this functional scan was used with a high-resolution,
whole-brain, T1-weighted structural scan (1 mm3 voxel size)
to make participant-specific VTA masks using a probabilistic
atlas (Murty et al., 2014; Ballard et al., 2011). rtfMRI
data were reconstructed and analyzed in real-time using
Pyneal (https://github.com/jeffmacinnes/pyneal),
which output the weighted mean BOLD response from
the subject-specific mask. This mean VTA response was
presented to participants as neurofeedback during acti-
vate trials only, updating at a frequency of 1 Hz. Offline
analyses of all other fMRI data were conducted using FSL
v5.0.1 (http://www.fmrib.ox.ac.uk/fsl) using standard
pipelines along with physiological noise correction. For
each participant, the outcome of interest—training-mediated
change in VTA self-activation ability from Pre-Test to Pre-Test,
or transfer—was computed using preprocessed, denoised,
masked data for the contrast, [activate - count]. As noted,
these analyses are described in detail elsewhere (MacInnes
et al., 2016).

Modeling Approach
Here, we were interested in investigating the information pro-
vided by the neurofeedback signal itself over different tempo-
ral contexts and its ability to predict transfer. We defined three
natural temporal contexts based on task design and experi-
mental demands: individual trial, scanning run, and full train-
ing session. Distinct events were nested within run (3) and
trial (15). These nested temporal contexts are illustrated in

Figure 2.

Figure 2: Temporal contexts in cognitive neurostimulation.
Participants completed a Pre-Test, CN training session, and
Post-Test. Training temporal contexts are shown as shaded
boxes—CN training session in grey, the three scanner runs
in purple, and the 15 individual trials in yellow—overlaid on a
sample neurofeedback signal in blue. Contexts are numbered
when appropriate; T=’TRIAL’.

Critically, participants were provided with minimal instruc-
tion about how to use motivational imagery to self-activate
and participant strategies were not reported during CN train-
ing. Thus, the analytical approach was blind to the strategies
used and how each individual did—or did not—explore his or
her unique motivational strategy space. Instead, we focus on
how the temporal structure of CN impacted learning to self-
activate the VTA, independent of the idiosyncratic content of
each individual’s learning experience.

To examine the effect of temporal structure, we extracted
the activate neurofeedback signal at the single-participant
level (i.e., the feedback each participant received), resam-
pled it to 2 Hz, and rescaled it to [-1,1] using MATLAB 2016b
(The MathWorks, Inc.). The analysis then proceeded in two
stages. First, we computed the slope of the neurofeedback
time series for each context using MATLAB polyfit, using
the common assumption in the neurofeedback literature that
learning is linear in time (e.g., (Lawrence et al., 2014)). This
produced a set of parameters reflecting learning during each
context (trial: 15, run: 3, session: 1). Next, we used linear re-
gression to examine how well the parameters for each context
predicted CN transfer, fitting one model per temporal context
on the group-level with MATLAB fitlm. Finally, we estimated
model evidence for each of the three models using two mea-
sures that penalized overfitting: the small-sample size equiva-
lent of Akaike Information Criterion (AICc; (Akaike, 1974)) and
the Bayesian Information Criterion (BIC; (Schwarz, 1978)).

Results

Initial model comparison suggests that a linear trend in neuro-
feedback signal at the session level is most predictive of trans-
fer of CN training (adjusted R2 = 0.335, F2,17 = 8.56, p < 0.01),
as described in Table 1.

While AICc and BIC both supported training session as the
best model, the differential penalties imposed by the two pa-
rameters provided conflicting evidence about the relative abil-
ities of individual trial and scanner run to predict transfer.



Table 1: Model evidence by temporal context.

Temporal Context AICc BIC
Individual trial 243.0 -13.88
Scanner run 10.82 11.74
Training session -2.584 -1.445

Discussion
We investigated whether the temporal structure of the rtfMRI
neurofeedback environment predicts transfer of training to
self-activate the VTA. We found initial evidence that success-
ful learning from VTA neurofeedback is associated with the
training context as a whole, although there may be a role for
shorter, trial-level changes. These data are consistent not only
with the function of dopamine in adaptive memory (Shohamy
& Adcock, 2010), but also with the idea that the biofeed-
back episode provides a novel, motivationally salient con-
text (MacDuffie & Strauman, 2017) that may support learning
through an increase in metacognitive awareness (MacDuffie
et al., 2018).

Our analytical approach was limited by a relatively small
sample size, resulting in insufficient statistical power to test the
effect of temporal context within one mixed model. Further,
data reflected significant variability both within- and across-
participants that may be driven by the nature and number of
motivational strategies used. Ongoing work will interrogate 1)
the effect of the linearity assumption by using data driven ap-
proaches (e.g., Gaussian process models) and 2) the speci-
ficity of these findings to veridical VTA neurofeedback learn-
ing by also examining two other feedback conditions, random
noise and patterned false feedback. Additional work in larger
samples is needed to better resolve the temporal dynamics of
VTA neurofeedback learning, especially how multiple learning
signals may emerge and interact over different time scales.
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