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Abstract: 
When tracking rewarded stimulus-response 
associations in volatile environments, humans make a 
surprisingly large number of seemingly suboptimal 
decisions, which do not maximize expected outcome. 
These ‘exploratory’ decisions have been assigned 
either to information seeking or to stochasticity in 
response selection. We reasoned that a fraction of 
exploratory decisions could be due to random noise in 
the inference process driving learning, noise which is 
otherwise assumed to be negligible. Accounting 
simultaneously for these different sources of 
exploration in reinforcement learning revealed that 
more than half of exploratory decisions are due to 
inference noise alone. This computational dissection of 
exploration is supported by neuroimaging data, which 
shows a dissociation in the relationship between choice 
behavior and two brain regions associated with 
exploration: fluctuations in anterior cingulate activity 
co-vary with inference noise during learning, whereas 
frontopolar activity drives exploration during choice. 
Together, these findings indicate that exploration in 
reward-guided learning is driven to a large part by 
random errors in inference, unbeknownst to the 
decision-maker. 
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In uncertain environments, decision-makers learn 
rewarding actions by trial-and-error to maximize their 
expected payoff. Well-acknowledged reinforcement 
learning (RL) models propose to track value signals 
associated with each possible action (Sutton & Barto, 
1998). Importantly, the large trial-to-trial choice 
variability in reward-guided learning is classically 

captured in RL models by a ‘softmax’ action selection 
rule modeling noise in the decision process. This 
choice variability captured by the softmax leads to 
occasional choices which do not maximize expected 
payoff. These occasional choices are often attributed 
to an ‘exploration’ process driven by the need to 
reduce uncertainty regarding recently unchosen 
options. Standard RL models typically assume all 
choice variability is captured by this softmax rule and 
that the mental computations involved in the update of 
the value signals – i.e., the inference process – are 
noise-free. 

However, it has recently been shown that mental 
inference suffers from a substantial amount of noise, 
responsible for a dominant fraction of human choice 
variability (Drugowitsch, Wyart, Devauchelle, & 
Koechlin, 2016). An intriguing possibility is that the 
inference process at the heart of reward-guided 
learning might be subject to the same kind of noise - 
i.e., random deviations from RL computations. 
Crucially, these random deviations reflecting 
computational imprecisions would capture seemingly 
exploratory trials unbeknownst to the decision-maker 
and formerly ascribed to noise in the decision process. 

To determine whether, and to what extent, inference 
noise accounts for exploration during reward-guided 
learning, we derived a theoretical formulation of 
reinforcement learning which accounts for random 
noise in its core computations. We then quantified the 
extent to which exploration is triggered incidentally by 
a noisy inference process rather than intentionally by 
modulations of the choice process (Gershman, 2018; 
Wilson, Geana, White, Ludvig, & Cohen, 2014). Lastly, 
we identified the neural correlates of inference noise in 



the human brain using functional magnetic resonance 
imaging (fMRI). 

Results 
Task We designed a restless, two-armed bandit 

game divided in 8 short blocks in which N=29 human 
subjects were asked to maximize their monetary 
payoff. On each trial, subjects chose one of the two 
options and received its associated outcome. The 
payoffs that could be obtained from either option (from 
1 to 99 points) were sampled from distributions whose 
means drifted independently across trials. Additionally, 
among the 8 blocks, 4 were ‘factual’ blocks where 
subjects only observed the outcome of the chosen 
option and the 4 others were ‘counterfactual’ blocks 
where subjects also observed the outcome of the 
unchosen option. A strong prediction concerning 
‘counterfactual’ blocks stems from the fact there is no 
uncertainty on the unchosen option. 

 
Computational Model To characterize the origin of 

exploratory decisions in this task, we derived a 
reinforcement learning model in which the update rule 
is corrupted by random inference noise (Figure 1a). As 
in existing theories, decision noise is modeled with a 
softmax decision rule.  
Importantly, although inference and decision noises 
both capture exploration as defined by standard 
(noise-free) reinforcement learning, the two 

components of exploration make different predictions 
regarding the temporal structure of decisions across 
successive trials. Indeed, inference noise corrupts the 
latent value signals which are gradually updated 
across trials, and which are used to drive successive 
decisions. Therefore, for the same fraction of 
exploratory decisions simulated either using inference 
or decision noise, inference noise engenders larger 
dependencies across successive choices, which are 
not predicted by decision noise (Figure 1b). 
 

Dominant contribution of inference noise to 
exploration We performed Bayesian model selection 
to characterize the contributions of both candidate 
sources of behavioral variability to exploratory 
decisions. Using particle filters to obtain estimates of 
the model evidence, we found that a reinforcement 
learning model corrupted by inference noise explained 
human behavior significantly better than a standard 
(noise-free) reinforcement learning model in the 
‘factual’ (exceedance p > 0.95) and ‘counterfactual’ 
blocks (exceedance p > 0.999). Furthermore, we found 
that, in ‘factual’ blocks, assuming a softmax decision 
rule lead to better explain human performances 
(exceedance p > 0.999). Considering now the 
‘counterfactual’ blocks, there is, by definition, no 
incentive to make exploratory decisions given that 
there is no uncertainty about the unchosen option. 
Therefore, theoretically, subjects should rely on a 
greedy, argmax decision rule rather than an 
exploratory, softmax decision rule. In accordance with 
this prediction, we found that a purely greedy, argmax 
decision rule captured the choice process better than a 
stochastic softmax decision rule (exceedance p > 
0.999). To further quantify the respective contributions 
of inference and decision noises in both blocks, we 
estimated the trial-to-trial trajectories of the latent 
value signals corrupted by noise conditioned on all 
decisions made by each subject in every block 
(Lindsten, 2013). We then assessed the fraction of 
exploratory decisions that could be explained solely by 
inference noise. We found that inference noise 
explained about 61% of exploratory decisions in 
‘factual’ blocks and 86% in ‘counterfactual’ ones. This 
is in agreement with the previous finding of the 
absence of the softmax decision rule in ‘counterfactual’ 
blocks. Interestingly, plotting the raw spread of choice 
variability due to inference noise and decision noise 
revealed that only decision noise was significantly 
reduced in the ‘counterfactual’ condition relative to the 
‘partial’ condition (t(28) = 4.6, p < 0.001). The 
inference noise was not different between the two 
conditions (t(28) = 1.2, p = 0.24), consistent with our 
hypothesis that noise-driven exploration does not aim 
explicitly at reducing uncertainty about unchosen 

Figure 1: Model predictions and validation (1a) 
Reinforcement learning model with inference and decision 
noise. (1b) Inference noise predicts a larger mutual 
dependency across trials than decision noise. 



options, but rather reflects a computational constraint 
on the underlying learning process (Figure 2). 

 
 

Dissociating inference noise from heuristics in 
learning One important possibility is that part of this 
inference noise is caused not by random deviations 
from the RL rule, but by systematic deviations around 
this hypothesized rule. In other words, subjects might 
be using a different learning scheme than the 
hypothesized reinforcement learning, which would 
then be fitted as inference noise. To test this 
hypothesis, we tested N=30 additional subjects in the 
‘counterfactual’ condition where the choice variability 
has been established above to be solely caused by 
inference noise (this results was replicated on this 
second dataset). In this second experiment, subjects 
played the same blocks of trials twice such that we 
could measure the consistency of their decisions 
across the two blocks and decompose the inference 
noise into a bias and a variance component. Indeed, 
systematic deviations tend to increase the consistency 
of decisions across repeated blocks, whereas random 
deviations tend to decrease decision consistency. 

The procedure to obtain the bias/variance trade-off 
quantifying the respective amounts of deterministic 
and stochastic deviations is the following: we fitted the 
reinforcement learning model with inference noise to 
each subject, and then simulated the model where 
inference noise was split in two additive terms, a first 
systematic bias term which was duplicated in the two 
repetitions of the same block, and a second random, 
variance term, which was sampled independently in 
the two repetitions. We varied the relative bias-
variance trade-off from zero (pure variance) to one 
(pure bias) for the simulations of each subject, and 
found that the trade-off that best accounted for the 
observed consistency of human decisions across 
repeated blocs was of 31.8% - indicating that more 

than two thirds of inference noise are not assignable to 
any systematic deviations from the RL rule across the 
two repetitions of the same block. This supports our 
hypothesis that most of the estimated inference noise 
truly reflects the limited precision in reinforcement 
learning updates, and not a systematic deviation 
between the assumed learning scheme used by the 
subjects and the one effectively used by the subjects 
(which may vary across subjects). 

 
Neural correlates of inference noise in the 

frontal cortex To analyze the neural markers of 
inference noise, we recorded BOLD fMRI data while 
subjects performed the first ‘factual’/‘counterfactual’ 
task. We focused our fMRI analyses on a subset of 

frontal regions of interest (ROIs) previously highlighted 
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Figure 3: Estimates of decision and inference noise in 
factual and counterfactual blocks (top: decision noise; 
bottom: inference noise). 
 

Figure 2: Neural correlates of inference noise in 
human frontal cortex. (3a) Regions of interest defined 
using switch > repeat contrast (pFWE < 0.05). (3b-c) 
Parameter estimates for parametric regressions of BOLD 
activity in the two ROIs involving the inference noise at 
outcome (3b) and choice (3c). 
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in the exploration-exploration trade-off (Daw, 
O’Doherty, Dayan, Seymour, & Dolan, 2006) and 
monitoring uncertainty during reward-guided learning 
(Behrens, Woolrich, Walton, & Rushworth, 2007; 
Kolling, Behrens, Mars, & Rushworth, 2012). The ROIs 
(Figure 3a) were defined with an independent analysis 
using a switch/stay model-free contrast. 

To assess whether activity in these two brain 
regions co-varied with inference noise at each learning 
step, we regressed outcome-locked BOLD activity in 
these ROIs against three parametric regressors 
derived: the chosen prediction error (chosen RPE), the 
absolute distance between option values (value 
difference), and the magnitude of inference noise 
(inference noise) – Figure 3b. This revealed only the 
ACC correlated significantly with the inference noise - 
ACC: t(28) = 5.409, p < 0.001; rFPC: t(28) = 1.938, p = 
0.063. We further investigated whether the co-variation 
of ACC activity with inference noise observed during 
the learning step - i.e., locked to outcome, is also 
present during the subsequent choice period when it 
drives exploratory decisions. To do so, we regressed 
BOLD activity in the pre-defined ROIs locked to the 
choice onset against three parametric regressors: the 
relative value of the chosen option (chosen value), the 
absolute distance between option values (value 
difference), and the magnitude of inference noise 
(inference noise) – Figure 3c. Interestingly, we found 
that inference noise propagated in time to the choice 
period in the ACC (t(28) = 5.589, p < 0.001), but also 
spread to FPC (t(28) = 5.745, p < 0.001). This 
observation suggests that inference noise is not solely 
driven by neural variability in response to outcome 
presentation, but also by neural variability in the 
maintenance of value signals in the choice period 
following the learning step. 
 

Dissociating the contributions of frontal cortex 
to exploration Our fMRI results so far indicate that 
inference noise initially reflected in the ACC at each 
learning step, subsequently co-varied with FPC activity 
during choice. To assess whether and how these two 
prefrontal regions influence subjects’ decision to stay 
or switch away from the previously chosen option, we 
ran a logistic regression analysis. The regressors were 
the theoretical relative value, the trial-by-trial residual 
estimates of the fMRI activity in the target regions 
(ACC, FPC) after regressing out the relative value, as 
well as their interactions with the relative value. We 
reasoned that a region modulating the neural gain of 
learning should affect the slope of the sigmoid function 
(interaction term), whereas a region involved in trading 
off exploration against exploitation should shift the 
sigmoid function (main effect term). This logistic 
regression showed that ACC activity negatively 

affected the neural gain of learning in both ‘factual’ and 
‘counter factual’ conditions (t(28) = -3.45, p = 0.0017; 
t(28) = -3.71, p < 0.001). By contrast, FPC activity 
biased decisions toward more exploration but only in 
the ‘factual’ condition when no information about the 
unchosen option was given (‘factual’ condition: t(28) = 
-2.40, p = 0.02; ‘counterfactual’ condition: t(28) = -
0.05, p = 0.96). 
 

Discussion 
In this study, we show that more than half of the 
overall exploration is triggered by random errors in the 
learning process rather than by an active drive to 
reduce uncertainty during choice. Model-based 
neuroimaging suggests distinct roles of the dorsal 
ACC and lateral FPC in exploration: in contrast to the 
FPC, our findings suggest that the dorsal ACC does 
not control the exploration-exploitation trade-off. 
Instead, by modulating the neural gain of learning, the 
dorsal ACC triggers a computationally cheap and 
previously underestimated form of exploration. 
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