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Abstract 

Connectomics has made progress in elucidating the 
structure and functional significance of anatomic brain 
networks. Yet researchers are only beginning to consider 
design principles that support efficient routing on such 
networks. In engineered networks, packet switching was 
developed to efficiently support fast, asynchronous, 
sparse activity. However, little work has considered 
routing architectures that would be best suited to 
operational demands such as the need for reliability and 
to the constraints of sparse activity, low energy budgets, 
and small or non-existent node buffers. In this context, 
we constructed a selective diffusion model inspired by 
packet-switched architectures. We focus in particular on 
a model germane to visual system function, though we 
simulate activity on the entire macaque connectome. We 
use an agent-based system to address how the brain could 
trade off among sparseness, message loss, buffer size, and 
speed. We find that when nodes have no buffer, overall 
speed and population sparseness are maximal, but there 
is high message loss (>50%). Small buffers lead to modest 
reduction in speed, but drastically reduced message loss. 
However, population sparseness is comparable to 
physiological values across buffer size, suggesting that 
selective diffusion could be an efficient solution to brain-
wide communication. 
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Background 

 

A fundamental fact about biological communication systems 
is that their basic scheme cannot be easily changed once a 
system is in place: they must be functional and stable for all 
nodes that can communicate with one another (Graham and 
Rockmore, 2011; Graham 2014; 2017). In the mammalian 
cortex, all neurons appear to have the capacity to 
communicate rapidly with essentially any other cortical 
neuron given the brain’s small-world topology. Thus, we 
propose that there exist mechanisms for the selective routing 
of messages in the mammalian brain, which are fundamental 
to brain function. Numerous specific questions regarding 
functional and physiological phenomena in the brain can be 

approached from this perspective. For example, how does the 
visual system achieve selectivity and invariance for object 
recognition? An early, detailed model of selective routing 
(Olshausen et al., 1993) addressed precisely this question, 
along with related ones (see also Wiskott, 2006). Indeed, 
many visual system functions such as attention and visual 
field remapping likewise appear to require these kinds of 
mechanisms, as first noted by Poggio (1984). 

However, the need for fast, selective routing is also 
recognized in areas beyond the visual system, such as during 
imagination (e.g., “mental workspace” models). Functional 
tasks such as decision making—for which current models 
generally consider only the process of weighing evidence—
can also be approached in terms of how a given neuron or 
group of neurons choose selectively among divergent output 
paths. In addition, it has long been suspected that brains 
quickly and selectively route signals from one path to another 
following lesion; functional reallocation could thus be 
conceived as a form of selective routing since reorganization 
has been observed within hours of lesion. 
 
Current Models of Brain Network Dynamics 
 

Connectomics has made progress in elucidating the structure 
and functional significance of anatomic brain networks (see, 
e.g., Bullmore and Sporns, 2012; Fornito et al., 2016). 
Recently, there has been increasing interest in the dynamics 
that could operate on such networks (Avena-Koenigsberger 
et al., 2018a,b; Misic et al., 2014a,b; 2018; Navlakha et al., 
2015; 2017). However, a given topology can support a range 
of routing protocols. To date, little work has considered the 
kinds of routing architecture that would be best suited to the 
structure and functional demands of brain networks. In 
particular, previous models have largely ignored the need for 
fast, flexible, efficient, and reliable communication among 
widely distributed nodes. 

Following Fornito et al. (2016), current models of network 
dynamics on brain-like networks fall into two general 
categories: diffusion models and navigation models. These 
models roughly reflect classical and alternative frameworks 
of neural communication, respectively. Diffusion models 
(e.g., Goñi et al., 2014) often assume that brain-wide 
communication is performed by an agglomeration of 
relatively simple, linearly summed elements. Summation is 
reasonable given that dynamics in isolated neurons can be 
predicted well. However, the dynamics of single neurons in 



the brain in response to natural stimuli remain poorly 
understood (Olshausen and Field, 2005). While diffusion 
models may capture important aspects of spiking dynamics—
and while brain networks undoubtedly perform some 
“broadcast”-like communications that resemble diffusion—
we argue that existing models ignore critical features of brain 
dynamics that may be essential to efficient communication 
among dispersed, interconnected neurons. In particular, 
diffusion models of large scale activity—which have no 
active means for limiting the transmission of activity—would 
appear to be wastefully inefficient if employed globally given 
the highly constrained energy budget of the brain. Estimates 
for individual neurons over time, and for populations of 
neurons at a given time, activity must be less than 10% of the 
possible total (Attwell and Laughlin, 2001; Lennie, 2003). In 
contrast to diffusion models, efficient neural systems appear 
to require sparse activity both to conserve energy, and to take 
advantage of sparse inputs (see e.g., Graham and Field, 
2006). 

Given that canonical estimates of characteristic path length 
between any two cortical neurons is around 3 synapses, the 
potential for signals to travel considerable network distances 
to reach their destination is high, especially in brains with 
billions of neurons and trillions of synapses. For diffusion 
models, not only are signals usually subject to random path 
assignments, they are also highly redundant, since the same 
signal is propagated along many channels. 

An alternative is navigation models, whereby messages are 
conveyed along a particular path. There is now substantial 
neurophysiological evidence that signals are propagated at 
great speed along selective paths, even without appealing to 
exotic routing protocols. Signals in lateral geniculate, for 
example, can travel to cortex and back to their origin in as 
little as 37 msec (Briggs and Usrey, 2007). Since thalamus is 
regarded as a central switchboard of the brain (Sherman, 
2008), it thus appears that the brain’s fundamental dynamics 
may be built around selective path choice, as well as speed. 

At the same time, diffusive processes have advantages in 
terms of communication reliability by dint of their 
redundancy, which have heretofore gone unrecognized. If 
signals diffuse, travel by random walks, or are more 
selectively routed, it may pay to have many copies of the 
same signal to ensure delivery. For example, though the goal 
of sensory coding appears to be in part to reduce 
redundancies in the input (Graham et al. 2006), it is clear that 
redundancies in sensory inputs are retained to a substantial 
extent in visual system activity. While the role of correlated 
activity has been debated in terms of the additional 
information throughput carried, such redundancies have not 
to our knowledge been considered as an error correction 
scheme for intra-brain communication.     

Therefore, we introduce a selective diffusion model that 
aims to take advantage of the benefits of both diffusion and 
navigation. The model is inspired by engineered packet-
switching communication systems, which are also a 
compromise between diffusion and navigation: they are 
selective in terms of pathfinding, but redundant because a 

given message may utilize several paths. Such systems have 
established basic design principles for supporting fast, robust, 
efficient communication among billions of nodes on small-
world networks (Graham and Rockmore, 2011; Graham, 
2014). For example, packet-switched systems have allowed 
largely uninterrupted, exponential Internet growth, to the 
point where there are now more Internet hosts than there are 
neurons in the macaque cortex (Graham, 2017). In addition, 
engineered systems like the Internet highlight the critical 
need for error correction on networks. This need has gone 
mostly unrecognized in brains, and is salient given that brains 
are known to “lose” messages (due to synaptic failure, for 
example). 
 

The Selective Diffusion Model 
 

The purpose of this model is to capture the essential features 
of brain network communication, much as artificial neural 
networks (ANNs) such as the Perceptron attempt to capture 
the essential features of brain network representation. Our 
model, like most ANNs, is thus abstract compared to spiking 
neuron models, but seeks to capture fundamental activity 
dynamics and mechanisms.  

At a conceptual level, messages are chopped into packets 
that each attempt to reach an intended target. Each packet 
potentially takes a different path, and each node requires the 
ability to buffer some number of packets in a queue. Such 
protocols were engineered for use in computer networks 
specifically to efficiently transmit sparse, asynchronous, 
directed signals; this stands in contrast to alternatives like 
circuit-switching (e.g., traditional telephony), which was 
designed to transmit dense, synchronous, bidirectional 
signals (Kleinrock, 1976). However, the selective diffusion 
model also considers the question of whether “packeting” in 
general improves reliability via redundancy of messages. 
 
Model Design 
 

We use whole-brain connectivity data queried from the 
CoCoMac 2.0 database (Bakker, Wachtler and Diesmann, 
2012). All edges are directed, and reciprocal connections are 
treated as distinct edges. Edge weights were queried as 
connected or unconnected (0 or 1) and only fully connected 
nodes (i.e., those with an in-degree and out-degree of at least 
1) were included (193 nodes total). It is assumed that viable 
paths are known to the system, a scheme that is plausible 
given the notion of “routing by synchrony.” Pathfinding in 
our simulations is accomplished via a fast matrix exponential 
method. In particular, for any n-vertex graph that can be 
represented by adjacency matrix A, the fastest way to find 
average path length (lA) is to utilize the powers of A. Let p(M) 
be the number of non-zero entries in any matrix M, and 
 

 
then  

Sk =
kX

i=1
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For a given message between sender and receiver, paths are 
chosen as follows: At each sending node, packets are 
distributed among N shortest paths in inverse proportion to 
network distance; thus, packets are likely to take short paths, 
but not necessarily the same short path.  
 
Simulations of the Model: Parameters 
 

Simulations of the model are agent-based: each autonomous 
node is assigned a decision vector that operates on network 
state variables such as message input, network topology, etc. 
The system employs first in-first out queueing and attempts 
to send the equivalent of 4000 total messages (5 packets per 
message). At each time step, 18 messages are injected with 
randomly chosen sender and receiver and message-passing 
occurs as a Poisson process. Messages are tracked across the 
network using a custom-designed “jam board” that tracks 
paths and message parts.  

Buffer size b was uniform for all nodes and was varied over 
[0, 5, ∞]. The packeting parameter (set to 5) controls the 
number of packets each message is divided into, and the 
related number of initial paths they are sent on. Alternatively, 
this design allows us to consider number of redundant copies 
of a “message” sent on potentially different paths. Activity 
per node/timestep is measured as the sum over edges with 
buffered messages counted once per buffer. 
 
Simulations of the Model: Results and Discussion 
 

Results of the simulations illustrate the trade-offs among 
buffer size, speed, activity, message loss, and sparseness, and 
are shown in Fig. 1. We note first that the high level of 
activity on networks with b > 0 may be implausible given 
limits of around 10% activity or less in real brains.  

Speed to completion is highest when b = 0 but there is very 
substantial message loss of 63.26%. Thus, there are clearly 
tradeoffs among buffer size, speed, activity, and message 
loss. However, if real neurons are truly as limited in buffering 
capacity as current neurophysiological models predict, we 
expect substantial message loss in brains. This could 
necessitate error correction strategies that resemble those 
used on the Internet (e.g., small receipt messages like “acks”).

 

     
 

           
 
Figure 1: TOP: Activity of the network over time (x-axis in units of time steps), summed over nodes for three simulations that 
(from left to right) tested buffer sizes of ∞, 5 total messages, and 0. Message loss (measured as a percentage of the total number 
of messages injected) is inset. BOTTOM: Rank order activity of the network per node, summed over time that tested buffer 
sizes as above (from left to right). Population sparseness is inset. 
 

These results also suggest that systems with b > 0 tend to 
cause a smaller fraction of nodes to be active over the course 
of the simulation, which in turn results in higher population 
sparseness (as defined by Rolls and Tovee, 1995, population 
sparseness is 1 for Gaussian data, and maximum at 0; see also 
Graham and Field, 2006). However, all b values tested show 

relatively high sparseness, and these values roughly match 
the range of empirical values in mammal visual cortex (0.36: 
Yoshida and Ohki, 2018; 0.60: Rolls and Tovee, 1995). We 
conclude that, as a general strategy in brain-like networks, 
selective diffusion may thus be advantageous as a 
compromise between diffusion and navigation models. 

lA =

p(A) +
nX

k=2

k · [p(Sk)� p(Sk�1)]

n
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