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Abstract
Understanding the links between brain and behavior is
a central goal of computational cognitive neuroscience.
We present a framework for simultaneous modeling of
behavioral and neuroimaging data in the context of hu-
man memory acquisition and forgetting. Using a Hid-
den Markov Model of memory that can account for both
behavioral and functional magnetic resonance imaging
(fMRI) observations, we show that we can predict memory
performance in held-out data at a level well-above chance
and that we can surpass the predictions made by fMRI
data alone as well as those made by variants of estab-
lished behavioral models. This work highlights a path
for better understanding the relationship between neu-
ral data and latent cognitive processes and advances a
model of memory whose predictive ability could enable
model-augmented learning environments.
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Introduction
The central goal of computational cognitive neuroscience is to
understand the link between human behavior and the brain.
In recent decades, cognitive scientists have developed and
refined detailed models of complex mental processes and be-
haviors. Simultaneously, cognitive neuroscientists have made
strides in understanding the ways in which brain patterns are
related to various cognitive states. However, integration of
these levels of analysis remains lacking for many higher level
cognitive activities.

In the work presented here we lay out a framework for com-
bining behavioral and physiological or neuroimaging data in a
so-called “joint model” – a single generative cognitive model
that is fit to both data sources. This approach holds promise
as a way to more fully integrate cognitive science and cogni-
tive neuroscience because inferred parameters must simulta-
neously account for the behavior and patterns of brain activity.
In addition, by leveraging more types of data, these models
have the potential to make better out of sample predictions
about behavior than a cognitive model fit to behavior alone.

One particularly promising focus for application of joint
modeling is understanding human long-term memory acquisi-
tion and forgetting. Much is known about the effects of various
learning environments on the retention of information across
days and weeks (Kahana, 2012).

This work has led to the development of behavioral models
that are able to track the state of an individual’s knowledge
for a piece of information or newly learned skill and make pre-
dictions about future performance (Atkinson, 1972; Corbett &

Anderson, 1995). Paralleling these efforts, neuroimaging re-
search has identified a number of fMRI signals measurable
at the time of a learning episode that are related to the fu-
ture memory status of the to-be-learned material (Sanquist,
Rohrbaugh, Syndulko, & Lindsley, 1980; Davachi, Mitchell, &
Wagner, 2003).

Combining these insights we show that fMRI signals com-
bined with a cognitive model can predict memory performance
in held-out data with a precision that surpasses models using
behavior alone.

Memory task
The behavior we seek to predict is cued-recall performance on
a set of Lithuanian-English word pairs (Grimaldi, Pyc, & Raw-
son, 2010). Participants studied a set of 45 word pairs, one
at at time, five times each. At the end of study each pair was
presented again and participants give a Judgment of Learning
(JOL), indicating on a 0-100 scale whether they think they will
remember the association between two words. Data from two
sets of participants were acquired. A large set of behavioral
participants performed the study and JOL tasks as described.
Then, after a delay, participants returned for a cued recall test
during which they saw the Lithuanian words one at a time and
had to type the English associate. Participants returned for the
recall test approximately 0 hours (N=20), 24 hours (N=49), 72
hours (N=60), or 168 hours (N=49) after the study session.

A separate set of 21 participants performed the study task
while undergoing fMRI scanning. All fMRI participants did the
recall test at a 72 hour delay. Functional scans covering the
brain were acquired at a spatial resolution of 2.5 mm3 with
a 1 second repetition time (TR) and anatomical scans were
collected at a spatial resolution of .75 mm3.

A neurally informed Hidden Markov Model of
memory

In this section we lay out the structure of our model, the kinds
of data used in estimating the model, and our approach to
evaluating model performance.

Markov model of memory
As a starting point, we have adapted a three-state Markov
model of memory originally put forward by Atkinson (1972).
This work casts memory as a Markov process in which the
mnemonic status of any memory is a latent state, with tran-
sitions between states dependent only on the previous state
and whether a study trial is currently occurring. Each memory
(e.g., for the association between two words) can be in one
of three latent states: unknown (U ), known with the possibility



of forgetting (K), or permanently known (P) (Figure 1A). The
model contains two sets of transition parameters, Study Tran-
sitions reflecting the dynamics of memory acquisition (study-
ing leads to the possibility of learning, i.e. transitioning to a
stronger memory state) and Decay Transitions accounting for
the possibility of decay or forgetting between study events (i.e.
transitioning to U) (Figure 1A).

Observable emissions

While we cannot directly observe the state of a particular
memory, a key feature of the models such as Atkinson (1972)
was the use of a Hidden Markov statistical model to relate
observable data to the latent states and transition dynamics
and it is this feature that facilitates the inclusion of neuroimag-
ing data in our work. In this work, we use three types of ob-
servations: behavioral tests of memory (recall), judgments of
learning (JOL), and fMRI activation on study trials (MRI). The
mapping between the model states and observable data is
made through a set of observation distributions defining the
probabilities that an observable signal takes on a value given
a latent memory state or transition (Figure 1B).

Observable behavioral data There were two forms of be-
havioral data included in our models: Judgments of Learn-
ing (JOLs) and binary recall performance. Both kinds of be-
havioral data were modeled as arising from the latent model
states (Figure 1B, left panel). The probability of correct recall
conditioned on state was set to fixed values of [.01, .9, .9] for
states U , K, and P, respectively. These values were chosen
to be consistent with the notions that recall of an ”unknown”
memory is very unlikely although there is some possibility of
guessing, and the primary (behavioral) difference between the
K and P states is the susceptibility to forgetting rather than the
likelihood of recall.

JOLs, which were continuous ratings from a bounded scale,
were modeled as truncated Gaussians with mean and vari-
ance to be estimated from the data. As with the recall obser-
vations, our models were constructed such that JOLs arose
from the model states (rather than the transitions, see below).

Observable fMRI signals For a subset of participants we
recorded fMRI data during the study trials. To identify can-
didate features for inclusion as observations we performed
group Independent Component Analysis (ICA) using the
ICASSO algorithm as implemented in the GIFT ICA toolbox
(http://mialab.mrn.org/software/gift/) (Calhoun, Adali, Pearl-
son, & Pekar, 2001; Van Maanen et al., 2011). This procedure
is blind to trial information and memory outcome and resulted
in a set of 60 independent components that are character-
ized by a particular temporal (the timecourse of activation) and
spatial (the loading of each component on fMRI voxels) profile
for each participant. Components that were unstable across
estimations (ICASSO) and components associated with signal
from ventricles or motion were discarded leaving 43 indepen-
dent components for inclusion as model features. Individual
trial activations were calculated as the mean of timepoints 4-6
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Figure 1: A. The matrix of transition probabilities for either study or
decay events in the three state memory model. The letters within
each matrix reflect the transition parameters which are estimated to
data. The state labels U are “unknown”, K are “known” (with pos-
sible forgetting), and P are “permanently known.” B. Schematic of
two variants for modeling observable data measured during study
events: State Emissions arise from the latent memory states; Tran-
sition Emissions are reflect whether a memory stayed in same the
state (”stay”) or moved to a new, stronger memory state (”switch”) on
a study event.

seconds post-stimulus onset, resulting in one activation value
for each trial in each component for each MRI participant.

For MRI observations we considered two variants of our
model structure. In the State model, shown on the left of Fig-
ure 1B, the MRI signals were set up to arise from the latent
states themselves. For the Transition model, we hypothe-
sized that fMRI observations might reflect transitions between
states on study trials rather than the states themselves. Given
the structure of our three-state model, this means that there
are observations associated with moving ”up” in, or switching,
memory state (the allowable between-state study transitions
are U→K and K→P) and observations associated with stay-
ing in the same state.

In both models the fMRI observations were modeled as
Guassians with mean and variance parameters to be esti-
mated for each component and state or transition distribution.

Model estimation
In the present work an individual’s memory for each word pair
was instantiated in a separate HMM. However, to get better
estimates of the parameters we used a hierarchical Bayesian
model that used group-level priors over the parameters to reg-
ularize the estimates. We used MCMC sampling via the NUTS
algorithm as implemented in Stan (Stan Development Team,
2017a) to estimate the posterior over the parameters (4 chains
of 200 iterations; 100 per chain discarded as burnin; 400 total
samples per parameter). To ensure convergence, we checked



that estimates of the probability of recall had low R̂ values (a
measure of whether the sampling chains are converging to
similar estimates) (Stan Development Team, 2017b; Gelman
& Rubin, 1992). We estimated parameters for several differ-
ent models: a Recall model fit to trial timing and recall per-
formance (the binary recall success scores for each word); a
model fit to trial timing, recall performance, and JOL obser-
vations (Recall+JOL); and two models fit to trial timing, re-
call performance, and fMRI observations. One of the fMRI
models included fMRI observations as arising from the states
(Recall+MRI state) and the other as reflecting transitions (Re-
call+MRI transition) (Figure 1B).

Model evaluation

We use K-fold cross validation to evaluate how well our mod-
els will predict new, unseen data, setting K to 10. Because our
goal is to assess the utility of incorporating MRI signals into a
memory model, the held-out data only included data from the
21 fMRI subjects. We divided up the data from these subjects
into ten equally sized folds, stratified across subjects and cor-
rect trials. We then trained ten versions of each model where
the training set consisted of all of the data from behavior-only
subjects and nine of the ten folds of the fMRI subjects. On the
held-out test set, we used the identity of the words and the trial
timings (and JOL or fMRI observations, where appropriate) to
generate the posterior probability of recall for each held out
word at the time of test.

As we are primarily interested in our ability to classify a new
piece of data as successfully recalled or not we used an area
under the ROC curve metric (ROC-AUC). The model ROCs
were defined by calculating, in each cross validation fold, the
proportion of predicted as remembered trials that were re-
called correctly (Hits) and the proportion of predicted as re-
membered trials that were not (False Alarms) at each level of
posterior recall probability given by the model.

We also evaluated a ”baseline” fMRI model that used fMRI
activations without a cognitive model to predict recall. This
fMRI-baseline model was an L2 regularized logistic regres-
sion model evaluated using the same cross validation regime
as described above. The regressors in this model were the
fMRI response from each study trial in each of the indepen-
dent components and the to-be-predicted outcome was the
probability of recall in the held-out data.

Results

Model predictions

We estimated the transition and observation parameters for
several model variants and then assessed their predictions
of recall performance in held out data. Comparing the ROC-
AUCs across models we observed several interesting effects
(Figure 2). First we note the above-chance performance of the
Recall model (ROC-AUC = .64 (±.02)) as a baseline against
which to compare models that include other forms of observ-
able data. The addition of JOLs as observations in the Re-
call+JOL model raised the held out ROC-AUC to .73 (±.01),

model variant

recall recall+JOL recall+MRI
state

recall+MRI
transition

m
ea

n 
AU

C
 (+

/- 
s.

e.
m

)

1.0

0.9

0.8

0.7

0.6

0.5

Held out ROC-AUCs

baseline MRI

Figure 2: Mean ROC-AUC (± s.e.m.) for memory predictions
across held-out folds.

demonstrating the utility of individual learners’ metacognitive
judgments in refining the model predictions.

Evaluation of the MRI-based models yielded additional im-
provements to the ROC-AUC scores. The Recall+MRI state
model, which included study-trial fMRI activations from a num-
ber of independent components and modeled their response
as arising from the three latent memory states, achieved an
AUC of .75 (±.01). This result, which was an improvement
over the models using behavioral data alone, shows that fMRI
data recorded during the course of learning can be success-
fully fused with a cognitive model to facilitate predictions of
memory recall for individual pairs of words. This result was
also a substantial improvement over the fMRI-baseline logis-
tic regression model (ROC-AUC = .60 (±.05)).

The Recall+MRI transition model, with fMRI activations
coming from switching or staying in the same state on a par-
ticular study trial, showed the highest held-out performance,
yielding a mean ROC-AUC of .77 (±.02).

Posterior predictive fMRI distributions
In addition to the benefits to prediction provided by joint model-
ing of brain and behavior, our approach enables us to inspect
the model and gain insights into the ways in which different
brain regions contribute to cognitive dynamics that are cap-
tured by the model. After estimation, we can examine the pos-
terior predictive distributions for each fMRI component’s acti-
vation conditioned on latent state (MRI-state model) or switch
versus stay transition (MRI-transition model).

Figure 3 shows an example of posterior predictive distribu-
tions for activation in two components. The upper row shows
a component associated primarily with bilateral lateral occipi-
tal and fusiform gyrus voxels along with the posterior predic-
tive distributions from the MRI-state and MRI-transition mod-
els. This component showed activation patterns that were as-
sociated with a mean shift in magnitude for P and K states
compared to U states (MRI-state model) as well as increased
response during study trials associated with switching states
relative to staying in the same state.
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Figure 3: Posterior predictive distributions for activation in two com-
ponents conditioned state or transition for the MRI-state and MRI-
transition models respectively

In contrast, the component in the bottom row, primarily as-
sociated with ventro-lateral prefrontal cortical voxels, showed
a different pattern. In the state model this component had sim-
ilar levels of activation for each latent state (although different
degrees of signal variance) whereas the transition model iden-
tified this component as having higher levels of activation and
variance for stay transitions compared to switch transitions.

Conclusion
We have described a hidden Markov model of memory that
can jointly model information about trial timing, behavioral ob-
servations, and fMRI measurements to predict recall perfor-
mance in held-out data. The results presented here shows
that when combined with a cognitive model, fMRI signals mea-
sured during the course of learning foreign language vocabu-
lary can be leveraged to make predictions at a level surpass-
ing that achieved by fMRI data alone or from a cognitive model
using only behavioral data.

We also showed how the parameters of a generative model
that captures cognitive dynamics as well as neuroimaging
data can be interpreted to understand the ways in which the
brain gives rise to complex cognitive behaviors unfolding over
time. Although our model at this point is simple, summarizing
memory in three discrete states, these analyses demonstrate
the ways in which joint modeling can facilitate understanding
of neural contributions to cognition beyond what is possible
from analyses that are limited to considering task design or
behavior without reference to the generative process.

The work described here lays the groundwork for a neu-
rally informed model of human memory and contributes to an
emerging effort to jointly model brain and behavior.
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