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Abstract

Model-free and model-based reinforcement-learning pro-
vide a successful framework for understanding human be-
havior and neural data. These two systems are usually
thought to compete for control of behavior. However, it
has also been proposed that they can be integrated coop-
eratively. The Dyna algorithm uses MB replay of past ex-
perience to train the MF system, and has inspired research
examining whether human learners do something similar.
Here we introduce an approach that links MF and MB learn-
ing in a new way: via the reward function. Given a model of
the learning environment, dynamic programming is used
to iteratively approximate state values that monotonically
converge to state values under the optimal decision policy.
Pseudorewards are calculated from these values and used
to shape the reward function of a MF learner in a way that is
guaranteed not to change the optimal policy. We show that
this method offers computational advantages over Dyna.
It also offers a new way to think about integrating MF and
MB RL: our knowledge of the world doesn’t just provide a
source of simulated experience for training our instincts;
it shapes the rewards that those instincts latch onto. We
discuss psychological phenomena that this theory could
apply to.
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Introduction
You’re at a dinner buffet and intend to choose a healthy salad
to help achieve your dietary goal of losing weight and stay-
ing fit. Nonetheless, you are unable to resist taking a piece
of pie. Eating the pie is pleasurable but afterwards you feel
guilt. Why are our habits so often misaligned with our goals,
and how might emotions like guilt mediate this misalignment?
The interaction between habits and goals – how the former
support or undermine the latter – is a critical and common-
place dilemma faced by people, and an important area of re-
search in psychology and neuroscience (Aarts & Dijksterhuis,
2000; Dolan & Dayan, 2013). Here we present a reinforce-
ment learning architecture that can be used to describe the
interaction between a simple learning system (e.g. habits) and
a higher-level, more sophisticated one (e.g. goals).

Dual-process theories – expressing human cognition as
the result of two interacting systems, such as systems that
produce habits vs. goals – explain a range of fundamental
properties of human decision-making and judgment. Inspired
by results in machine learning, recent research in psychol-
ogy and neuroscience has explored how the brain might con-
tain two systems that use different approaches to the prob-
lem of learning from environmental rewards, known as model-
free (MF) and model-based (MB) reinforcement learning (RL)
(Daw & Dayan, 2014; Daw, Niv, & Dayan, 2005; Otto, Gersh-
man, Markman, & Daw, 2013). MF learning relies on direct
trial-and-error interaction with the environment (Sutton, Barto,

& Williams, 1992), while MB learning leverages knowledge
about the causal structure of the environment (Barto, Bradtke,
& Singh, 1995). MF learning offers a simple, computation-
ally cheap approach to learning, while MB learning is more
sophisticated and resource-intensive. In the domain of deci-
sion making, MF and MB learning have been used respec-
tively to describe dual-processes including habits vs. goals,
reflexive vs. reflective choice, retrospective vs. prospective
decisions, and Pavlovian vs. instrumental learning (Boureau,
Sokol-Hessner, & Daw, 2015; Dolan & Dayan, 2013).

Understanding the cognitive and neural relationship be-
tween MF and MB learning – and, by extension, between vari-
ous dual-processes – remains an unresolved question. Histor-
ically, animal psychologists viewed these two approaches as
distinct and competing hypotheses, with behaviorists arguing
in favor of MF learning based on stimulus-response associa-
tions (Thorndike, 1933), and others positing an internal rep-
resentation of the environment, or “cognitive map” (Tolman,
1948). Nowadays, while behavioral and neural data indicate
that human learning relies on both systems (Daw et al., 2005;
Dayan & Berridge, 2014; Gläscher, Daw, Dayan, & O’Doherty,
2010), it is typically assumed that they compete for control of
behavior. However, it is also possible for them to cooperate.
The Dyna architecture achieves such cooperation by integrat-
ing MF learning with MB planning (Sutton, 1991). In Dyna, as
MF learning occurs, transitions between environmental states
and the resulting rewards are stored in a model. That model
is used to replay these past experiences to further train MF
state-action values. Behavioral data from people performing a
retrospective revaluation task is consistent with a cooperative
architecture like Dyna (Gershman, Markman, & Otto, 2014).

Here we introduce Model-Based Pseudoreward Approxi-
mation (MBPA), a method for cooperative interaction between
MF and MB learning. The MB system generates pseudore-
wards that shape the reward function used in MF learning.
According to the shaping theorem (Ng, Harada, & Russell,
1999), conditions exist under which the optimal decision pol-
icy will remain invariant to such modifications of the reward
function, opening the possibility that pseudorewards can be
used to guide agents toward optimal behavior. That is, since
the optimal policy is guaranteed to remain unchanged, pseu-
dorewards can potentially be used to guide the agent to the
optimal policy. Using these principles, we show that pseu-
dorewards can provide a link between MF and MB learning
through modification of the reward function.

MBPA offers an appealing alternative to Dyna, both con-
ceptually and practically. With Dyna, the MB replay of past
experience suggests that planning (by internal simulation) is



(a) Dyna archetecture.

(b) Model-Based Pseudoreward Approximation.

Figure 1: Schematic illustrations of two approaches to coop-
erative RL: (a) Dyna and (b) our method, MBPA.

one way that different learning systems might be linked in hu-
man cognition. MBPA offers an alternative approach, based
on changing the reward function, which can be tested experi-
mentally in humans. In particular, this offers a new way to think
about the relationship between dual-process theories that in-
volve MF and MB learning, with pseudorewards providing the
crucial link. In the case of eating sweets when one’s goal is to
diet, the emotion of guilt serves as a (negative) pseudoreward,
generated by the MB goal to retrain the MF habitual system.

We first introduce our method and its theoretical back-
ground. We present two simulations which show the effec-
tiveness of our method and how it compares with Dyna. We
end by discussing how this integrated approach may serve as
a metacognitive solution to the rational use of cognitive re-
sources (Griffiths, Lieder, & Goodman, 2015), and how it may
shed light on the function of emotion in mediating the relation-
ship between dual-processes.

Model-Based Pseudoreward Approximation
Dyna is an RL architecture that combines MF learning with a
MB system that replays past experiences, which are used to
train the MF system (Figure 1a). After each real action taken
in the environment, the model stores the state-action pair and
reward received. It then randomly selects n past state-action
pairs and replays them. These planned actions are used to
update the MF system as if they were real actions.

We now consider Model-Based Pseudoreward Approxi-
mation (MBPA), a different way to merge the two. Our
method uses dynamic programming to approximate state val-
ues. These values are used to calculate pseudorewards ac-
cording to the shaping theorem. By shaping the reward func-
tion, pseudorewards provide a link between MB planning and
MF learning. While MBPA can be initialized without a model
of the environment, the cognitive phenomena we wish to de-

scribe entail situations where the model is already learned,
but the MF system is misaligned with it. For example, one
may have goals based on a known model of the environment,
but habitually behave inconsistently with such goals. MBPA
describes how the model can help align the two systems.

Pseudorewards and the shaping theorem
Pseudorewards offer a way of conferring extra information to
an agent about the reward landscape. Essentially, a small re-
ward is given to the MF agent (a Q-learner in our simulations)
whenever it takes an action that helps the agent move towards
the goal (or, conversely, a negative reward is given for moving
away from the goal). Instead of the agent receiving actual
reward R(s,a,s′) when moving from state s→ s′, the agent
receives an augmented reward R′(s,a,s′) where

R′(s,a,s′) = R(s,a,s′)+F(s,a,s′). (1)
Pseudorewards are defined using shaping functions, F . In

Ng et al. (1999), conditions for which the optimal policy π∗

remains invariant under a shaping function are developed. In
particular, F necessarily must be a potential-based shaping
function to possess this invariance property:

F(s,a,s′) = γΦ(s′)−Φ(s), (2)
where Φ is a real-valued function, Φ : S → R. If the shaping
function is not potential-based, it is possible that Q-learning
will converge to a suboptimal solution. The simplest exam-
ple of invariant pseudorewards uses the difference in optimal
values between the agent’s current state and next state:

F(s,a,s′) = γV ∗(s′)−V ∗(s). (3)
This method is called the optimal policy pseudoreward – it

encourages the agent to move down the optimal path from its
current state. With an ε-greedy decision policy, if ε = 0, the
agent would move directly to the goal along the shortest path.

With optimal policy pseudorewards the agent can maximize
long-term reward simply by taking the most rewarding action
at each step. However, in real-world scenarios, it may be unre-
alistic for a human to have such complete information. Com-
puting the optimal policy may require many iterations of the
Bellman equation, or solving a linear program.

Approximating the value function
Optimal policy pseudorewards require knowing the value func-
tion under the optimal policy, but that may be costly to
compute. Alternatively, the optimal value function can be
approximated, requiring less computation. Bounded Real-
Time Dynamic Programming (BRTDP) is a planning algorithm
that attains certain performance guarantees if its lower- and
upper-bounded estimates of state values converge monotoni-
cally toward state values under the optimal policy (McMahan,
Likhachev, & Gordon, 2005). This monotonic convergence to-
ward optimal values is guaranteed to occur if the lower and
upper bounds are initialized properly. Here we take advan-
tage of this monotone property to calculate approximate state
values using dynamic programming. Specifically, any num-
ber, n, of iterations of the Bellman equation can be used to



approximate state values, and as n increases, the state val-
ues converge toward optimal values. These values after n
iterations are used to approximate pseudorewards using the
shaping theorem. Thus, there is a tradeoff, determined by n,
between the proximity of pseudorewards to their optimal value
and the amount of computation. As discussed later, learning
which n minimizes overall computation is a bounded rationality
optimization that can be solved with metacognition.

Linking MF and MB RL with the reward function

Figure 1b provides a schematic illustration of MBPA, wherein
dynamic programming is used to approximate pseudore-
wards, which in turn shape the reward function and policy of
the MF agent. We are interested in describing situations in
which humans already have a model of the environment and
use this information to train their MF instincts. A model con-
taining state-action pairs and reward contingencies is used to
estimate state values using n iterations of the Bellman equa-
tion. These values are used to calculate pseudorewards with
a potential-based shaping function, then added onto real re-
wards whenever the agent chooses an action. In this way,
the MF agent is guided by pseudorewards that are generated
using MB RL. In the remainder of the paper we present simu-
lations focused on evaluating MBPA and comparing it to Dyna.

Simulation 1: Maze learning

Methods

Our first simulation involved an agent learning in a maze en-
vironment (Sutton, 1991). The agent (a simple Q-learner),
began each episode in the upper-left corner of a maze, and
was rewarded one point for reaching the lower-right corner.
The state space consisted of 121 locations, 50 of which were
walls, and actions consisted of the four cardinal directions.
The agent was trained for fifty episodes, with each episode
ending when the goal was reached or 2,000 steps were taken.
An ε-greedy decision policy was used with ε = 0.25. Rewards
were discounted with γ = 0.95. Simulations were run one-
hundred times and averaged.

Results

Figure 2a shows the number of steps per episode needed to
reach the goal, averaged across 50 episodes, as a function
of the the number of Bellman updates used to approximate
pseudorewards. As expected, learning is quicker when pseu-
dorewards are closer to their optimal values. We also show
performance of the Dyna agent as a function of the number of
planning steps taken after each real step. While approximate
pseudorewards are calculated just once using n iterations, the
n planning steps used by Dyna are taken after every single
step of every episode.

The number of real steps alone taken by the Dyna agent
do not converge as low as the MBPA agent. With sufficiently
precise pseudorewards, the MBPA agent, on the other hand,
can learn the shortest path on the very first episode. Specif-
ically, 24 Bellman updates are required for this, because the

(a)

(b)

Figure 2: (a) MBPA requires fewer steps to reach the goal than
Dyna during maze learning. (b) MBPA learns the shortest path
more quickly than Dyna with maze learning.

start state is 24 steps away from the goal state; after 24 it-
erations of the Bellman equation, optimal state values have
propagated back from the goal state to the start state.

Next, we calculated the actual time required to learn the
shortest path. While the pseudoreward method may take
fewer steps to reach the goal than Dyna, it does not neces-
sarily mean that it is faster; planning steps (which use scalar
operations to update Q-values) are about two orders of magni-
tude quicker than Bellman updates (which require matrix mul-
tiplication). However, Figure 2b shows that MBPA is still faster
than Dyna. The fastest learning occurs when 24 iterations of
the Bellman equation are used; any more than this is unnec-
essary and the CPU time increases.

A second simulation was run using a standard mountain car
environment. A similar pattern of results as seen in Simulation
1 emerged, but are omited here for brevity.

Discussion
The relationship between MF and MB RL has received much
attention in cognitive neuroscience research. For example,
some work has focused on the neural arbitration between the
two systems (Daw et al., 2005), while other work has pro-
posed an underlying unification of both systems (Miller, Shen-
hav, & Ludvig, 2016). At the computational level of analysis
(Marr, 1982), it has been suggested (Boureau et al., 2015)
that negotiating these two systems could be understood as
a metacognitive solution to a problem of resource rational-



ity (Griffiths et al., 2015). From this perspective, cooperative
RL can be understood as a means for transferring computa-
tionally intensive MB knowledge to the MF system for quick
and easy implementation. The metacognitive optimization in
MBPA is the tradeoff between MB state value approximation
and the effectiveness of training the MF system. Our results
show that certain degrees of state value approximation min-
imize the computation needed to learn, which results in less
computation than Dyna. This point of minimal computation in
Figure 2 represents the optimal resource rational solution.

MBPA links MF and MB RL cooperatively by shaping the
reward function via pseudoreward. Another interesting ex-
ample of the interplay between habits and goals is in moral
decision-making. It has been suggested that the dual-system
approach to moral psychology is well described by the dis-
tinction between MF and MB RL, with the former describ-
ing the emotional, instinctive, action-oriented, habitual system
and the later mapping onto the cognitive, rational, outcome-
oriented, and goal-based system (Crockett, 2013; Cushman,
2013). MBPA may provide a direct link between these two
systems, with the MB cognitive system producing particular
emotions that function as pseudorewards, shaping the MF
emotional system. For example, when one’s moral behavior
deviates from one’s moral compass, leading to an untoward
outcome, remorse could be generated to correct the action-
oriented propensity that produced the misguided behavior.

Another interesting application of cooperative RL and
metacognitive rationality is in the formation of sub-goals, or
“options” (Huys et al., 2015). Sub-goals offer a way of sim-
plifying complex, high-dimension environments into simpler
strategies and MF heuristic-based decisions. MBPA could of-
fer a mechanism for approximating state values of a complex
decision space, and transferring this knowledge to a simpler,
computationally cheap MF system through reward shaping.

By providing a new way to link MF and MB RL, MBPA offers
a new way to think about how the two systems might inter-
act. Dyna is readily likened to using MB imagination to train
a MF system, which has a natural psychological interpreta-
tion. What might be an analog of MBPA in human cognition?
In particular, how might pseudorewards – which provide the
critical link between systems – manifest cognitively? For any
given task or goal-directed behavior, certain emotions often
have the effect of altering the reward landscape and func-
tioning as pseudorewards. MBPA proposes that some emo-
tions may represent the (approximate) values of states that
are stored in a model, and then used to train MF learning
by adding bonuses (positive emotions) or punishments (neg-
ative emotions) to certain actions. It is already known that
emotions influence MF learning, as in the case of fear condi-
tioning or positive reinforcement. These emotions are usually
elicited by some external factor; what we are suggesting with
MBPA is that the emotions can be produced internally, using
an already-learned model of the environment, such as goals.

Dual-process theories are abundant in psychology, but
there is a dearth of computational theories for understanding

the precise relationship between dual systems. MBPA offers a
new way to understand interaction between MB and MF sys-
tems, with natural cognitive and affective psychological inter-
pretations. We hope that MBPA will inspire new questions to
be pursued experimentally.
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