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Abstract: 

Feedforward models of visual processing provide 
human-level object-recognition performance and state-
of-the-art predictions of temporally averaged neural 
responses. However, the primate visual system 
processes information through dynamic recurrent 
signaling. Here we characterize and model the 
representational dynamics of visual processing along 
multiple areas of the human ventral stream by combining 
source-reconstructed magnetoencephalography data 
and deep learning. Our analyses of the empirical data 
revealed neural responses that traverse distinct 
encoding schemes across time and space, in line with 
signatures of recurrent signaling. Next, we estimated the 
ability of different deep network architectures to capture 
the neural dynamics by using neural representational 
trajectories as space- and time-varying target functions. 
Feedforward models, with units that ramp-up their 
activity over time, predicted nonlinear representational 
dynamics, but failed to account for the neural effects. 
Recurrent models of matched parametric complexity 
significantly better explained the held-out data. We next 
optimised the recurrent networks for a classification 
objective only. While performing significantly better than 
random networks, the variance explained fell short of the 
architecture’s capacity. This paves the way for the 
search for additional objectives that the ventral stream 

may optimize, including category-orthogonal objectives, 
noise, occlusion, manipulability, and semantics. 
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Introduction 

Our ability to derive meaning from retinal input relies on 
an intricate network of interconnected cortical regions 
along the ventral visual pathway. Although neuronal 
selectivity has been characterized across a variety of 
visual areas, we still do not have a mechanistic 
understanding of the underlying computations. To this 
end, deep neural networks (DNNs) provide a promising 
tool, enabling us to obtain image-computable models 
that directly test theoretical predictions (Kietzmann, 
McClure, & Kriegeskorte, 2017; Kriegeskorte, 2015; 
Yamins & DiCarlo, 2016). To date, feed-forward DNNs 
optimized for categorization accuracy provide the best 
model of time-averaged neural responses to novel 
stimuli across visual areas (Cadena et al., 2017; Güçlü 



& van Gerven, 2014; Khaligh-Razavi & Kriegeskorte, 
2014; Wen et al., 2017; Yamins et al., 2014). The 
primate visual system, however, contains abundant 
lateral and feedback connections. These give rise to 
rapid recurrent interactions, which are thought to 
contribute to visual inference (Freiwald & Tsao, 2010; 
Sugase, Yamane, Ueno, & Kawano, 1999). 

Results and Discussion 

To better understand how neural representations 
change across space and time, we here combine MEG 
source reconstruction with representational similarity 
analysis (RSA; Figure 1A). We focus our analyses on 
the human ventral stream, a network of cortical regions 
known to process object information. Three regions of 
interest (ROIs) were defined in each participant, 
including early- (V1-V3), intermediate- (V4t,LO1-3), and 
high-level (IT/PHC) visual areas. Across two sessions 
each, 15 participants viewed 92 stimuli from a diverse 
set of natural object categories (Figure 1B) while we 
recorded stimulus evoked activation patterns across 
MEG 306 channels. Following source projection using 
individual anatomical MRIs and minimum norm 
estimates (MNE), we used correlation distance to 
estimate all pairwise dissimilarities in the neural 
population activity (summarized in representational 
dissimilarity matrices (RDMs, Kriegeskorte, Mur, & 
Bandettini, 2008)). RDMs were computed separately for 
each ROI and time-point, yielding representational 
trajectories that describe how the neural code changes 
across time in each area. The empirical data indicate 
substantial changes across the first 300ms of 
processing (Figure 1D, row 1 for an example), 
suggesting that the underlying neural populations 
traverse multiple distinct representational schemes. 

Given the time-varying representational trajectories 
for all ROIs, we used deep learning as a framework to 
gain insight into the principles that may underlie the 
corresponding neural computations. Deep learning has 
the advantage of yielding image-computable, task-
performing models, while enabling researchers to 
explicitly test for different hypotheses about the 
computational objectives that the brain may optimize. 
This normative approach asks what functions need to 
be optimized in an artificial system to result in internal 
representations that best align with neural data. Before 
addressing the ultimate question of neural objectives, 
however, we first tested different DNN architectures for 
their ability to model 300 ms of representational 
dynamics observed across all measured ROIs in the 
brain. We derived a stochastic gradient descent 
method, an extension to representational distance 

learning (RDL, Mcclure & Kriegeskorte, 2016), to inject 
the time-varying MEG RDM trajectories of the three 
different ROIs as separate target functions into different 
layers of the deep networks (Figure 1C). Each trained 
DNN thereby attempts to model all representational 
dynamics observed across time in all human ventral 
stream ROIs. The networks were trained using a 
separate set of 141k images (RDL-61), matching the 
categorical structure of the 92 stimuli shown during the 
human MEG data acquisition. In addition to the time-
varying RDL objective, the networks were optimized 
using a time-decaying categorization objective to boost 
RDL generalization. After training, the representational 
trajectories of the DNNs were extracted for the 
previously unseen 92 experimental stimuli, and tested 
against unseen data using cross-validation procedures 
(split-half across MEG measurement sessions). 

Two architecture types were tested. First, we 
extended the feed-forward model class to exhibit non-
linear dynamics by allowing each neural network layer 
to ramp-up its activity over time (models BK9, and BK11). 
This was contrasted with a fully recurrent convolutional 
architecture that contained bottom-up, top-down and 
lateral connections (BLT network, Spoerer, McClure, & 
Kriegeskorte, 2017). BLT and ramp-up networks were 
matched in the number of free parameters. Figure 1D 
shows the model predictions derived from the different 
architectures for region V4t,LO1-3, together with 
empirical MEG RDMs. To quantitatively evaluate the 
match between empirical and model representations, 
we first compared the average distance across all 
stimulus conditions for each time-point (Figure 2A). 
Ramp-up feed-forward networks exhibit non-linear 
representational dynamics, but they were not able to 
closely follow the empirical data (trajectory correlations 
with held-out data: .83, .58, .48 for V1-3, V4t,LO1-3, and 
IT/PHC). Fully recurrent DNNs, however, closely 
matched the ventral stream dynamics (trajectory 
correlations: .95, .93, .97 for V1-3, V4t,LO1-3, and 
IT/PHC). Next, we evaluated the detailed patterns of 
representational distances beyond changes in mean 
distance, by computing the correlation between the 
model RDMs and the held-out empirical RDMs for each 
time-point. The model fit was computed by averaging 
these correlations across time (Figure 2B). For each 
ventral stream area, the recurrent models significantly 
outperformed the feed-forward ramp-up models in 
predicting the detailed distance patterns (Wilcoxon 
sign-rank test, FDR corrected across all tests at 
q<0.05). 

Having established that fully recurrent BLT models 
are capable of capturing the empirically observed 
representational dynamics, we next estimated how 



much of the explanatory power can be achieved by 
following the normative approach of optimizing solely 
on a categorization objective (565 categories, 1.5 
million images; Mehrer, Kietzmann, & Kriegeskorte, 
2017). In terms of categorization performance, the 
recurrent architecture clearly outperformed the feed-
forward ramp-up model (50.70% validation accuracy for 
BLT, vs 40.73 % for BK11). Using the same RDL training 
set as before, we optimised the read out from these 
category networks to best explain the empirical data by 
selecting the best layers, weighting the features in each 
layer, and optimising the read out timing. Matching 
previous results, the category-optimised networks 
clearly outperformed random control networks. 
However, the correlations were reduced by about 40% 
compared to the networks’ capacity as demonstrated 
when optimised via RDL training. Our approach of 
combining MEG source-based RSA and DNN 
modelling paves the way for the search for additional 
objectives beyond categorisation that govern neural 
activity in the first 300 ms of computation. 
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Figure 1: (A) MEG analysis 
pipeline to extract time-varying 
representational trajectories 
across multiple ROIs. (B) 
Stimulus set and category 
structure of experimental 
stimuli. Matching the category 
structure, a novel training set 
was created (141k images) 
based on which DNNs were 
trained. (C) The time-varying 
neural RDMs of three separate 
ROIs were used as target for 
deep learning. Given pairs of 
stimuli, the neural distance (for 
each given ROI and time-point) 
was used to derive a learning 
gradient, pushing networks to 
mirror the neural distances as 
close as possible. Networks 
thereby attempt to 
simultaneously model the time-
varying RDMs across all 
measured ventral stream ROIs 
(D) Example RDM movies for a 
ventral stream ROI (V4t,LO1-3) 
and corresponding DNN model 
predictions, as derived from 
recurrent (middle row) and 
ramp-up feed-forward 
networks (bottom-row). 

Figure 2: (A) Temporal development of the 
average pattern distance for MEG data as 
well as different DNN architectures. (B) 
Average RDM correlations between held-
out empirical RDMs and model predictions, 
normalized by the predictive performance of 
the training data (latter shown at 1.0 for each 
ROI). Arrows indicate significant differences 
(non-parametric tests, FDR corrected for all 
tests at q<0.05). Uniform bars indicate 
networks optimised using deep learning on 
the empirical data directly (RDL). Striped 
bars indicate networks that were trained via 
external objectives (categorization, and 
random), but subsequently optimised using 
RDL set to allow for optimal read-out. 
Recurrent- outperform feed-forward DNNs, 
and classification objectives outperform 
random weights. Yet, a large gap remains 
between the recurrent categorization 
networks, and the explanatory capacity of 
the underlying architecture. 
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