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Abstract

Humans make complex inferences on faces, ranging from ob-
jective properties (gender, ethnicity, expression, age, identity,
etc) to subjective judgments (facial attractiveness, trustworthi-
ness, sociability, friendliness, etc). While the objective aspects
of face perception have been extensively studied, fewer com-
putational models have been developed for the social impres-
sions of faces. Bridging this gap, we develop a method to pre-
dict human impressions of faces in 40 social dimensions, us-
ing deep representations from state-of-the-art neural networks.
We find that model performance grows as the human consen-
sus on a face trait increases. This illustrates the learnability of
subjective social perception of faces, especially when there is
high human consensus. To verify the generalization ability, we
apply the model on a large dataset, CelebA, and empirically
verify the quality of model predictions. To further probe what
makes a face salient in certain traits, we develop ModifAE: a
novel standalone autoencoding neural network that can learn
to make continuous modifications on multiple traits. We train
ModifAE to modify continuous first-impression face traits, from
our predicted dataset, and empirically show that this modifica-
tion network produces convincing modifications, demonstrating
the accuracy of the predictive model. Both the prediction and
modification networks have wide applications in real life.
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Introduction
Humans are skilled at parsing information from faces. Apart
from making objective inferences such as identity, age, and
gender of a person, humans also form first impressions of a
face, such as facial attractiveness, friendliness, trustworthi-
ness, sociability, and dominance. In spite of the subjective na-
ture of these impressions, there is often a consensus among
human in how they perceive attractiveness and trustworthi-
ness in faces. This indicates that faces contain high-level vi-
sual cues for social inferences, therefore making it possible
to model the inference process. Given the profound social
outcomes (electoral success, sentencing decisions) resulted
from these subjective judgments(Todorov, Olivola, Dotsch, &
Mende-Siedlecki, 2015), it is crucial to understand the nature
of these social impressions.
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In this paper, we examine human social perceptions of
faces extensively and systematically. We evaluate human
consistency in 40 social features that are typically studied by
social psychologists (Todorov et al., 2015). Then, using inter-
nal representations from deep learning models, we propose a
computational model that can successfully predict human so-
cial perception for traits where humans have consensus. This
model can generalize well to an entirely new dataset. Lastly,
we develop an image modification model - ModifAE, which can
modify multiple social impression attributes of faces.

Dataset

We use a dataset (Bainbridge, Isola, & Oliva, 2013) consist-
ing of 2,222 face images and annotations for 20 pairs of social
attributes. Each attribute is rated by multiple subjects. We
take the average rating as the group opinion. We compute the
Spearman’s rank correlation between the average human rat-
ings of every pair of social features and show their correlations
in a heatmap (Figure 1(a)). From the figure, we see that neg-
ative social features such as untrustworthy, aggressive, cold,
introverted, and irresponsible form a correlated block. Like-
wise, the most positive features such as attractive, sociable,
caring, friendly, happy, intelligent, interesting, and confident
are highly correlated with each other.

Prediction Model for Social Impressions

After averaging human ratings, each face receives a continu-
ous score in all social dimensions. We model these scores
with a regression model. We propose a ridge regression
model on either features from deep convolutional neural net-
works (CNN) or traditional face geometry based features, and
present results from both feature sets. Such visual features
are usually high-dimensional, so we first perform Principal
Component Analysis (PCA) on the extracted features of the
training set to reduce dimensionality. The PCA dimensionality
is chosen by cross-validation on a validation set, separately
for each trait.
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Figure 1: Correlation heatmaps among social features. (a): human; (b): CNN-based model.

Regression on Geometric Features
Past studies have found that geometric configurations of a
face can predict facial attractiveness. To test if other social
attributes might also be predicted from geometric features,
we compute 29 geometric features based on definitions de-
scribed in (Ma, Correll, & Wittenbrink, 2015), and further ex-
tract a “smoothness” feature and “skin color” feature. We also
detect 68 face landmarks for each face, and then compute
distances and slopes between every two landmarks. Com-
bining 29 handcrafted geometric features, smoothness, color
and the distance-slope features, we obtain 4592 features in
total. PCA is applied to reduce dimensionality. Then a ridge
regression model is applied to predict social attribute ratings
of a face. The hyper-parameter of ridge regression is selected
by leave-one-out validation within the training set.

Regression on CNN Features
Previous studies have shown that pretrained deep learning
models can provide versatile feature representations. There-
fore, we extract image features from pretrained neural net-
works, choosing from six architectures with different original
training goals: face identification, object classification, face
landmark detection.

To find the best CNN features among the six networks, we
first find the best-performing feature layers of each network
in the ridge regression prediction task. Before the ridge re-
gression, we perform PCA and pick the PCA dimensionality
that gives best results on the validation set. Then, we com-
pare the results among networks to select the best features
overall.

Results of Prediction Model
After comparing 6 neural networks’ all layers, we find that the
conv5 2 layer of VGG16 (trained for object classification) lead

to the best results. These best-performing CNN features also
exceed the prediction correlation of the geometric features in
most attributes. Figure 2 compares prediction performance of
the CNN model and the geometric feature model.

We speculate that the poor performance from the face
recognition networks is due to their optimization for specific
facial tasks. Learning face landmark configurations or differ-
ences between faces that define identity may not correlate
well with the task at hand, which looks for commonalities be-
hind certain social features beyond identity.

To evaluate model performance, we did a random
train/validation/test split. The prediction performance is eval-
uated using Pearson’s correlation on the test set. For each
social attribute, we also compute human group consistency
as an index of the strength of learning signal.

Since a change in expression would produce a change in
landmark locations, it is not surprising that landmark-based
geometric features achieve comparable or slightly higher cor-
relation when predicting social attributes that are highly re-
lated to expressions (such as ‘happy’, ‘unhappy’, ‘cold’ and
‘friendly’). For other social attributes, the CNN model performs
better, suggesting that CNN features encode much more infor-
mation than landmark-based features.

Evaluating Against Human Consensus

To gauge model success, we conduct a quantitative compari-
son between the impressions predicted by our best performing
model and those perceived by humans. We take our model
predictions, compute the Spearman correlation between ev-
ery pair of traits, and display them in a heatmap (see Fig-
ure 1 (b)). The resulting heatmap shares similar patterns with
the figure generated from average human ratings (see the left
panel in Figure 1). Pearson Correlation between the upper
triangle of the two similarity matrices (human and model pre-



Figure 2: Model comparison on 40 social features.

diction) is 0.9836. This suggests that our model successfully
preserves human-perceived relationships between traits.

To examine human consensus level, we calculate human
group consistency following the procedure in (Bainbridge et
al., 2013). We find that human agreements covary with model
performance and observe an extremely high correlation, ρ =
0.98, p < 10−5.

Generalize to a Larger Dataset
To test if our prediction model generalize beyond the relatively
small dataset, we use it to make new predictions on CelebA
dataset(Liu, Luo, Wang, & Tang, 2015), which consists of over
200,000 images of celebrities. Example faces and their pre-
dicted ratings are shown in Figure 3.

We ran an AMT experiment to check how our predicted val-
ues align with human in aggressive, responsible, trustworthy
and emotional judgments. For each trait, we pick up 40 pairs
of images. Among each pair, one of the image receives a
high score, the other receives a low score, as predicted by our
model. 30 AMT workers are asked which face better exem-
plifies the specified attribute. We than calculated the overall
likelihood that the face of higher predicted score is chosen
by workers for each attribute. As seen in Table 1, all the at-
tributes predicted by the prediction network align well with hu-
man judgments. Thus, we have verified that our model gener-
alizes well to the new dataset.

Figure 3: Examples of predicted impressions of CelebA faces.

Table 1: Verification of model generalization in CelebA dataset

Attribute Chose “correct” member of the pair

Aggressive 0.9509
Emotional 0.9234

Responsible 0.7783
Trustworthy 0.8780

From Prediction to Modification

To demonstrate the quality of predicted impressions and visu-
alize what facial dimensions are vital for social impressions,
we train an image modification network with predicted social
impression ratings of CelebA (Liu et al., 2015) images. We de-
velop a special image modification network: ModifAE that can
make continuous modifications of first impressions for faces.

Architecture The ModifAE architecture (Figure 4) consists
of two autoencoding paths (traits and image) which fuse in
the middle of the network. Two FC layers project the traits to
the image feature map size at the bottleneck. Then, the values
in the image feature maps are multiplied by the projected trait
values. Next, we reduces the bottleneck to 16 filters, using
1×1 convolutions, fusing together the image and trait infor-
mation. Then, those values are used to predict the trait output
through another FC layer with linear activation.

Figure 4: General illustration of ModifAE architecture.

Training ModifAE is trained soley on an autoencoding task.
At training time, the objective is to take in an image and its



traits, autoencode both, and arrive at outputs identical to the
inputs. No form of adversarial or cycle training is necessary.
Despite this, the trained network can modify images without
obscuring identity traits.

Qualitative Evaluation

Here, we show that ModifAE successfully makes continuous
modifications on multiple traits (see Figure 5). We trained
ModifAE on two traits: “attractive” and “emotional.” The pic-
ture in the upper left corner is the original, with its true trait
values next to it. Looking at the (0,0) point in results (unattrac-
tive and unemotional) her prominent cheekbone appears to
sag, and her smile becomes a frown. In general, as she be-
comes more emotional, her smile increases, and as she is
made more attractive, her smile increases and skin becomes
smoother. These modifications give us an easily interpretable
window into what the predictive model considers when rating
faces.

Figure 5: Image modifications by ModifAE.

Quantitative Evaluation

We assessed human interpretations of the modified faces in
two traits: “trustworthy” and “aggressive.” For each trait, par-
ticipants recruited from AMT see a sequence of 120 image
pairs. They are asked to pick which image most exemplifies
the trait in every pair. Each sequence contains 10 ground truth
pairs and 110 modified pairs. We calculate the fraction of
subjects that chose the image with the increased trait. This
is shown in Table 2, along with the human accuracy with the
ground truth examples. In the “aggressive” case, our modi-
fied images achieve 79.9% of the consensus that the ground
truth pairs achieve. For “trustworthiness,” the modified images
achieve 81.1% of the consensus on true images. It shows that
the predictive model captures robust information about the ex-
amined traits and successfully passed that information to the
modification model.

Table 2: Human evaluation of modified images

Attribute Performance

Aggressive Ground Truth 0.9363
Modified Faces 0.7484

Trustworthy Ground Truth 0.8571
Modified Faces 0.6959

Conclusion
We have shown that a deep network can be used to pre-
dict human first impressions of faces, achieving high corre-
lation with the average human ratings. In addition, our pre-
dictive model can generalize to an entirely new dataset that
mimics real life scenarios. We further employ a generative
model, ModifAE, to automatically modify a face’s attributes
while preserving its realism. Successful modifications by Mod-
ifAE demonstrate the accuracy of the predictive model in ad-
dition to the power of the modification model. Both models
have wide applications in real life as well as in academics. For
instance, the prediction model can guide people to manage
their impressions by selecting photos which exemplify certain
desired attributes. With the modification model, psychologists
can generate various realistic faces with precise control of so-
cial impressions.
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