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Abstract

Despite a wealth of behavioral and neural findings, psy-
chology and cognitive neuroscience lack integrative the-
ories. One difficulty is the apparent multifuctional charac-
ter of neural function (Anderson, 2016), a perspective ul-
timately founded on our neural and cognitive ontologies
(Shine, Eisenberg, & Poldrack, 2016), and potentially ame-
liorated by their reconceptualization. While the progres-
sive development of our neural ontology in terms of brain
atlases and functional networks is the norm, commiser-
ate refinement of a cognitive ontology has been lacking.
We forward a data-driven framework to integrate multi-
ple psychological literatures into a new cognitive ontol-
ogy. We examine individual-differences across an un-
precedented range of behavioral tasks, self-report sur-
veys and real-world outcomes and use factor-analysis to
reduce the dimensionality of these measurements, creat-
ing a “cognitive space” to serve as a common coordinate
system to describe many cognitive constructs. Within the
cognitive space measurements are structured, which is
revealed through clustering. This new representation of
cognitive measures provides a hypothesis for neural or-
ganization, which we pursue in an fMRI experiment where
we scan participants completing a subset of the behav-
ioral measures.
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Cognitive neuroscience has linked neural activity to a
wealth of cognitive processes, yet struggles to produce a cu-
mulative account of neural function(Yarkoni, Poldrack, Van Es-
sen, & Wager, 2010). This slow progress has many causes,
but is partially explained by the lack of systematic ontologies
describing brain structure and mental function. While integra-
tive brain atlases have been steadily improving, commensu-
rate efforts to improve cognitive ontologies have been limited.

We address this by developing a data-driven cognitive on-
tology derived from individual differences across a broad
range of behavioral tasks, self-report surveys, and real-world
outcomes (see (Eisenberg et al., 2018) for an overview of
the research program). 522 participants completed 63 differ-
ent measures on Mechanical Turk related to decision-making,
working memory, cognitive control, impulsivity, and personal-
ity, amongst other psychological constructs. Each of these
measures was decomposed into multiple dependent vari-
ables (DVs; N=206) which reflect means of specific item sets,

comparisons between task conditions, or model parameters
thought to capture putative psychological constructs.

A particular question for this project was whether surveys
and task DVs could be captured within a single space, given
their different measurement characteristics. Because the bat-
tery included both surveys and tasks putatively related to the
same cognitive constructs (e.g., impulsivity), one would pre-
dict significant relationships between the two sets of DVs that
would support such a joint cognitive space. Interestingly,
though subsets of the tasks and surveys putatively reflect sim-
ilar constructs, we find that they are only weakly correlated,
and thus bifurcate in the ontology. The independence of these
two groups of measures suggests a top-level ontological dis-
tinction between the constructs underlying task and survey
DVs and necessitated the creation of two cognitive spaces.

We thus analyzed tasks and surveys separately using iden-
tical pipelines. Using exploratory factor analysis, we identify
two low-dimensional cognitive spaces that separately capture
behavioral tasks and surveys. The task space was defined by
five dimensions that are broadly related to drift-diffusion pa-
rameters (speed of information processing, caution, and per-
ceptual/motor responses), temporal discounting, and strategic
information processing. Survey factors largely reflected sepa-
rate measurement scales (e.g., Social Risk Taking and Finan-
cial Risk Taking, DOSPERT subscores) or a combination of
several closely related DVs (e.g., Sensation Seeking, which
related to DVs derived from the Sensation Seeking Scale,
UPPS-P, 17, and DOSPERT). A notable exception was the
Goal-Directedness factor, which integrates a heterogeneous
set of DVs related to goal-setting, self-control, future time-
perspective, and grit.

To complement this dimensional approach, we employed
hierarchical clustering within the task and survey spaces iden-
tify separable clusters. These clusters can be thought of as
psychological “kinds”, related to, but separate from, the di-
mensions identified with factor analysis. As an example, in
the survey dendrogram a self-control” branch composed of
two separate clusters was apparent: one primarily related to
impulsivity (but also reflecting goal-directedness, mindfulness
and reward sensitivity), and one reflecting long-term goal at-
titudes, incorporating time-perspective and implicit theories of
willpower. Overall, structure discovery reveals a simpler cog-
nitive ontology than typically employed in the psychological
sciences.

As real-world relevance is an essential feature of theoret-
ical constructs(Yarkoni & Westfall, 2016), we also evaluated



whether tasks and surveys can predict real-world outcomes.
We reduced the self-reported real-world outcomes to 9 "tar-
get” factors (e.g. mental health, binge drinking) and com-
puted individual outcome factor scores, which represents real-
world outcomes that have previously been related to behav-
ioral tasks and surveys included in the measurement battery.
We assessed predictive ability using cross-validated ridge re-
gression. While surveys performed moderately well, tasks
showed almost no predictive ability. For the surveys, the pre-
dictive psychological dimensions can be expressed as an "on-
tological fingerprint”, which exemplifies the utility of a joint on-
tological language for describing diverse societally relevant
outcomes. Each outcome measure was predicted by a hetero-
geneous set of survey factors, indicating that real-world out-
comes are related to a diversity of underlying cognitive traits.

To link these cognitive structures to neural activity, we ran
a followup fMRI study. Using a genetic algorithm, we identi-
fied a smaller number of behavioral tasks and survey ques-
tions that best captured the entire ontological space to use
in an fMRI study. 100 participants completed 10 tasks and
resting-state scans, from which we calculate 40 unique con-
trasts. Contrasts were subjected to dimensionality reduction
and clustered to reveal a neural similarity space that comple-
ments that derived from behavioral individual differences. A
subset of these participants completed the original behavioral
battery, affording direct linkage between neural structures and
ontological constructs. This research is ongoing.

In summary, cognitive ontologies describe the psychologi-
cal constructs through which most human neuroscience is un-
derstood. We demonstrate that data-driven structure discov-
ery techniques can profitably improve these ontologies, and
that doing so helps to contextualize brain states identified us-
ing fMRI.
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