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1 Abstract
Computation plays a unique explanatory role in cog-
nitive science and neuroscience: what brains do is ex-
plained in terms of the computations they perform.
What precisely that means remains unclear, but it is
clear that brains do not compute in the same way that
standard digital computers do. Very little of theoretical
computer science illuminates how the brain computes.
However, it does seem that brains might perform analog
computation. Unfortunately, analog computation is not
well-understood, and is often thought to simply mean
computation over continuous variables. While that is
often true, it is not the essential feature of analog com-
putation, as I argue here. Instead, analog computation is
the processing of analog representations, which are rep-
resentations that physically co-vary monotonically with
what they represent. Making clear what analog compu-
tation really is helps to make clear the sense in which
brains compute, whether they do so continuously or dis-
cretely.
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2 Computational Explanation
Relative to most other sciences, computation plays a
unique explanatory role in the cognitive sciences.1 Vir-
tually all sciences use computation as a way of construct-
ing models of various phenomena. Computational geo-
sciences, computational astrophysics, and computational
economics all use computer simulation and modeling
techniques to explain various phenomena. The cognitive
sciences use computation in this way as well, but there is
another, perhaps more interesting way in which the no-
tion of computation is deployed in these cases. Specifi-
cally, cognitive scientists explain the cognitive capacities
and sub-capacities of the mind and brain in terms of the
computations that certain systems perform (Piccinini,
2006). It is not merely that minds and brains can be

1By “cognitive sciences,” I mean to include so-called traditional
cognitive science, computational neuroscience, and cognitive neu-
roscience, among others.

simulated via computational methods, but that they lit-
erally perform computations themselves. Thus, while a
computational astrophysicist might simulate the evolu-
tion of stellar dynamics with a complex computational
system, no astrophysicist claims that a star does what
it does because stars are literally computing something.
But cognitive scientists claim just that: brains do what
they do because they literally perform certain computa-
tions.

Unfortunately, what precisely it means to say that the
brain performs computations is not completely clear.
For some, this means that the brain encodes and pro-
cesses information (Koch, 1999), for others, this means
the brain traffics in representations (London & Häusser,
2005); while this may seem to amount to the same thing,
there are good reasons to think of computation and in-
formation processing as distinct (Piccinini & Scarantino,
2011). Whatever the answer is to this question, it has be-
come clear that the sense in which the mind/brain com-
putes must be different from digital computation of the
kind studied in computer science. In the past, some have
argued that the all-or-none behavior of the action poten-
tial suggests an analogy to the binary nature of digital
computation (von Neumann, 1958); it is now clear that
the similarities between neural firing and digital com-
putation do not meaningfully support the view that the
brain is a computer. Thus, if the brain is a computer, it
must be some other kind.

3 Analog Computation
The vast majority of discussions on computation take
digital computation to be the beginning and the end
of the story. Turing’s work on computable functions
provides us with the theoretical underpinnings of com-
putability theory by way of the Turing Machine and
other automata or formal frameworks, and the subse-
quent development of physical realizations of these au-
tomata has given us the incredibly powerful digital com-
puters with which we are all familiar.

What’s missing from this view of computation is ana-
log computation. To many, this simply means computa-
tion involving continuous or real-valued quantities, but
that does a disservice to the realities of analog compu-



tation. In fact, a close look at how actual analog com-
puters worked shows that analog computers often used
discontinuous quantities in interesting ways. For exam-
ple, some problems of interest might need to be approx-
imated by a piecewise-linear function when their math-
ematical characterization was unknown. One solution is
to use what were called arbitrary function generators. A
textbook introduces these components as follows:

Such behavior presents almost insurmountable
obstacles to purely mathematical investigation,
but poses no particular difficulty to analog-
computer investigation. Again, we are not solv-
ing equations, we are modeling systems. Thus
if we can describe the input-output relation-
ship…, all we need to do is provide an element
on the computer which has the same relation-
ship between its input and output voltages.
Such elements are known as arbitrary function
generators. (Peterson, 1967, p. 109)

These components were able to produce piecewise-linear
approximations to any given function (hence arbitrary
function generators). One example is given in Figure 1.
The striking thing about this example is that the ana-
log computer would be using a discontinuous function
to approximate a continuous function of interest. Given
the received view of analog computers as only involving
continuous variables, this would seem to be nearly oxy-
moronic. And yet, this is how analog computers could
work.
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Figure 1: Continuous function (grey) modeled on an
analog computer by an arbitrary function generator
(black).

Another example of a discontinuous representation in
analog computers is the representation of the step func-
tion. Certain phenomena exhibit discontinuous jumps
between different levels. One way to model these jumps
is via a continuous approximation. For example, an ideal
square wave can be modeled as the sum of a number of
sine (or cosine) waves. In Figure 2, a step function is

shown with increasingly-accurate approximations, which
are themselves sums of increasingly-many sine functions.
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Figure 2: Step function (thick black line) approximated
by successive sine approximations.

To represent such a function on an analog com-
puter, one could use a similar continuous approxima-
tion method. However, a better method for representing
a discontinuous function would be to use discontinuous
functions. That is exactly what we find in analog com-
puters. By using relays or switches, analog computers
could directly represent step functions (for example),
overcoming the limitations of using continuous approx-
imations. In a discussion of the use of relays to in-
corporate a discontinuous voltage change in an analog
computer, rather than using a continuous approxima-
tion (the diode limited amplifier circuit mentioned), the
author of an analog computing monograph explains:

For the problem being studied, it is not imme-
diately obvious why the relay is needed. The
voltage from the diode limited amplifier circuit
can be made to closely approximate a delayed
step function.…There are two reasons why this
is not practical. The slope of the “step” func-
tion out of this circuit is not exactly zero af-
ter the original discontinuity. In the process of
adding two of these step functions, a small error
that increases with [time] would be applied to
the integrator and cause an unwanted “drift”
in the output of the integrator. (Ashley, 1963,
p. 201)

These examples make it clear that continuity is not
essential for analog computation. However, what is es-
sential is analog representation in the sense of (Maley,
2011, 2018). On this view of analog representation, what
makes a representation analog is that it varies monotoni-
cally with what it represents. Familiar examples are mer-
cury thermometers and analog watches. These are ana-
log not because they are fundamentally continuous, but
because, in a literal, physical sense, they vary with what
they represent. The hands of an analog watch rotate



as time increases; the height of a mercury thermometer
varies as temperature increases. Furthermore, an analog
watch with hands that tick (i.e. vary in discrete steps)
and a mercury thermometer that only increases in 1 de-
gree increments are both still analog, even when they do
not vary continuously.

4 Analog Neural Computation
Understanding what is essential about analog computa-
tion helps to make clear how brains might legitimately
still be computers, even though they are not digital com-
puters. For example, inter-neural phenomena such as
firing rates are analog representations, as well as intra-
neural phenomena such as electrical signaling in gap
junctions and the analog modulation of individual neu-
ral spikes (Maley, 2018). This is true whether or not the
underlying medium is really continuous or not: what
matters is how the medium co-varies with what it rep-
resents.

This may also help to make sense of higher-level neu-
ral phenomena. This is somewhat speculative, given how
little is known about larger-scale brain function and how
ensembles of neurons work together to represent higher-
level phenomena. However, there are some clear exam-
ples, such grid cells that represent location (Hafting,
Fyhn, Molden, Moser, & Moser, 2005) and retinotopic
coordinate maps represent various visual phenomena
(Wandell, Dumoulin, & Brewer, 2007).

Most importantly, getting clear about different kinds
of computation helps to bridge the ways that computa-
tion happens in both cognitive and neural processes. It
is important to have a unified framework of computation
so that researchers from different areas of neuroscience
can make sense of what it means for different neural phe-
nomena to perform computations.
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