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Our experience of the world is punctuated in time by discrete
events, all connected by an architecture of hidden forces and
causes. In order to form expectations about the future, one
of the brain’s primary functions is to infer the statistical struc-
ture underlying past experiences (Hyman, 1953; Sternberg,
1969). In fact, even within the first year of life, infants reli-
ably detect the frequency with which one phoneme follows an-
other in spoken language (Saffran, Aslin, & Newport, 1996).
By the time we reach adulthood, uncovering statistical rela-
tionships between items and events enables us to perform
abstract reasoning (Bousfield, 1953), identify visual patterns
(Fiser & Aslin, 2002), produce language (Friederici, 2005), de-
velop social intuition (Gopnik & Wellman, 2012), and segment
continuous streams of data into self-similar parcels (Reynolds,
Zacks, & Braver, 2007).

Increasingly, the structure of transitions between events
is conceptualized as a network (Schapiro, Rogers, Cordova,
Turk-Browne, & Botvinick, 2013; Karuza, Kahn, Thompson-
Schill, & Bassett, 2017; Kahn, Karuza, Vettel, & Bassett,
2017); and one natural way to interpret a sequence of events
is as a random walk along this transition graph (Newman,
2003). It has long been known that people are sensitive to
differences in transition probabilities (i.e., differences in the
weights on edges in the transition network)—intuitively, peo-
ple are surprised when they witness a rare transition (Saffran
et al., 1996; Fiser & Aslin, 2002). Perhaps more interestingly,
mounting evidence suggests that humans are also sensitive to
the abstract, higher-order features of transition networks like
clusters and communities, even when the transition probabil-
ities are uniform (Schapiro et al., 2013; Karuza et al., 2017;
Kahn et al., 2017). But how and why does the brain learn
these abstract features? Does the inference of higher-order
structures require sophisticated learning algorithms at the ex-
pense of precious mental resources? Or instead, does focus-
ing on the coarse-grained architecture of a network allow us
to ignore the fine-scale details, thereby conserving mental en-
ergy?

To answer these questions, here we propose a single driv-
ing hypothesis: that when building models of the world, the
brain is finely-tuned to maximize accuracy while simultane-

ously minimizing the use of computational resources. From
this simple assumption, we show that the free energy principle
necessarily leads to a maximum entropy description of peo-
ple’s internal expectations (Shannon, 1948; Friston, Kilner, &
Harrison, 2006). As we vary the amount of statistical noise in
the model, we find that higher-order features of the transition
network organically come into focus while the fine-scale struc-
ture fades away, thus providing a concise mechanism explain-
ing an array of previously observed network effects on human
expectations (Schapiro et al., 2013; Karuza et al., 2017; Kahn
et al., 2017). Importantly, our model admits a concise analytic
form that aids intuition and, by learning the model parameters
that describe a particular individual, can be used to predict hu-
man behavior on a person-by-person basis. Additionally, our
model asserts that human expectations should depend criti-
cally on the different topological scales in a transition network,
a prediction that we subsequently test and validate in a novel
experiment.

Generally, our results highlight the important role of mental
errors in shaping abstract representations, and directly inspire
new physically-motivated models of human behavior. We em-
phasize that this focus on mental errors stands in stark con-
trast to the prevailing intuition in reinforcement learning and
cognitive science that the human brain is optimized to identify
complex patterns (Fiser & Aslin, 2002; Reynolds et al., 2007)
and maximize prediction accuracy (Stachenfeld, Botvinick, &
Gershman, 2017; Momennejad et al., 2017). More broadly,
the surprising role of statistical noise in shaping human expec-
tations highlights the value of simple thermodynamic models
for understanding cognition, with real-world applications from
learning (Schapiro et al., 2013; Karuza et al., 2017; Kahn et
al., 2017) and planning (Stachenfeld et al., 2017; Momenne-
jad et al., 2017) to diagnosing and treating psychiatric dis-
orders (Montague, Hyman, & Cohen, 2004; Maia & Frank,
2011).
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