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Abstract

Controllability analysis on brain networks is an emerging
subfield of network neuroscience. It utilizes both the clas-
sical and modern control theories to understand the roles
of control regions and their energetic properties in cer-
tain neural circuits. The previous framework is based on
the structural networks built from diffusion imaging thus
lacks the adaptability to the functional networks. Here,
we apply the system identification algorithm to the BOLD
time series to infer the effective connectivity matrix and
noise structure, followed by transferring the recognized
stochastic dynamics into the linear system and quanti-
fying the controllability via the minimal control sets, the
global controllability, the average controllability and the
synchronizability. This work provides a complementary
part of the structural controllability analysis and enables
the investigation of controllability on functional brain net-
works.
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Introduction

Being able to consciously control the brain states has long
been human being’s dream. Yet, to achieve this ultimate goal,
given the constrained knowledges and instruments we can ac-
cess today, it would be a more realistic target to investigate
how the brain performs its own control system from both the
structural and functional perspectives. Control theory allows
us to probe into the type of question how the system can be
driven into certain states with some input energy. This group
of methods have already been applied in analyzing the gen-
eral biological networks (Liu, Slotine, & Barabási, 2011), the
C.elegans neural system (Yan et al., 2017) and human’s mod-
eled dynamics inferred diffusion spectrum imaging (Gu et al.,
2015). Specially on the human brain’s structural networks,
there are also works that extend the dynamics with nonlinear
activation functions(Muldoon et al., 2016), examine the roles
of controllability through the neural development(Tang et al.,
2017) and inspect its impact on the dynamical trajectories of
transitioning among states(Betzel, Gu, Medaglia, Pasqualetti,
& Bassett, 2016; Gu et al., 2017). On the other hand, to the
best as we know, although there are already attempts on build-
ing the whole brain computational models(Deco, Tononi, Boly,
& Kringelbach, 2015), the analysis from the control perspec-
tive still lacks.

In this work, we studied the problem of functional controlla-
bility with the extensively processed fMRI Data from the HCP
Young Adults 1200 released subjects(Van Essen et al., 2013).
We first identified the stochastic linear equation by fitting the 0-
and 1-shift correlation matrices. Next, based on the fitted dy-
namics, we built the regular linear control system by setting up
the transition matrix as the effective connectivity and format-
ing the control matrix as the covariance matrix of noise struc-
ture. Finally we examined the distribution of minimal control
sets and three types of controllability measurements across
the 1003 subjects.

Methods
We denote the state(could be BOLD signals) at time t for a
brain as xt , which is an N× 1 vector with N as the number
of regions. Usually, the evolutionary dynamics of the states is
formulated as describing the state’s time derivative dx/dt with
the state variable x and other parameterized related terms,
e.g. the noise. In this work, we attempt to firstly fit the dynam-
ics of xt , followed by investigating it from the control perspec-
tives where we examine both the spatial distribution of minimal
control sets and control measurements.

Construction of the Control Dynamics

Here, we start from the linear stochastic model, where the
changing rate of the state is determined by the current state
and the random perturbation following Gilson’ s setting(Gilson,
Moreno-Bote, Ponce-Alvarez, Ritter, & Deco, 2016). Mathe-
matically, the dynamic model is given by

dx = (− 1
τx

x+Cx)dt +dWt , (1)

where τx is the time constant, C is the effective connectivity
matrix and dW is a wiener process with covariance Σ. Let
J = − 1

τx
I+C be the Jacobian. The loss function of fitting

the dynamics is given by the weighted sum of the distance
between each pair of estimated and empirical auto-covariance
matrices, i.e.

L(J,Σ) =
K

∑
k=1

λ
kl(Qk(J,Σ),Q̂k), (2)

where l(·) is the loss function between two covariance matrix,
K is the number of shift we want to use for the estimation and
λ is a scalar to weight among the losses for these Qk ’s. Using



the gradient descent, we can estimated the description of the
linear stochastic equation

dx = (Ĵx)dt + Σ̂ ·dBt (3)

where dBt is the standard wiener process. Analogous to
the classical control representation ẋ(t) = Ax(t)+Bu(t), the
state transforming matrix A can be modeled with the Jacobian
J and the control input matrix B is reformulated as Σ̂ ·BK ,
which simultaneously selects the control sets with N×K ma-
trix BK and preserves the co-varying pattern estimated from
the stochastic modeling with Σ̂. Consequently, we built up the
linear time-invariant dynamic model for brain’s functional sig-
nals as

dx
dt

= Ĵx+ Σ̂ ·BK u(t) (4)

where uu(t) is the input vector to be determined. In the fol-
lowing section, for ease of notations, we may use A = Ĵ and
B = Σ̂ ·BK when there is no ambiguity.

Identification of Minimal Control Sets

Theoretically, if transition matrix A for the linear system is
dense, the system is almost surely controllable from a single
node. But the control energy could be extremely high, which
would result in unreasonable trajectories in practice. Thus
here we adapt the minimum dominant set algorithm in (Sun
& Ma, 2017) and define the α-minimum control set (α-MCS)
as the solution of the following optimization problem.

minimize
x

f = ∑
i∈V

xi

subject to xi + ∑
j∈V

ai jx j ≥ α, i, j = 1,2, ...,n; i 6= j.
(5)

where A is the transition matrix and xi takes 0 or 1. The intu-
ition here is that a non-driver node is called α-controllable if it
has at least α weighted connectivity strength adjacent to the
driver node. When the network is binary and α = 1, it reduces
to the regular MDS problem.

Controllability Measurements

Considering the special setting of control matrix, we compute
the overall controllability measurement instead of the regional
ones (Gu et al., 2015).

Average Controllability The average controllability of the
linear stable system refers to the inverse of its H2-norm,
which intuitively quantifies the average distance the system
can reach in the state space with unit input energy. Mathe-
matically H2 norm is the energy of the output of the system

ẋ = Ax+∑
i

Biωi (6)

where ωi = δi(t) is the δ-function and Bi is the i-th column
control matrix in Eqn[4]. The average controllability is then

defined as

ac = H−1
2 =

(√
trace

[
BT

(∫ +∞

0
exp(At +AT t)dt

)
B
])−1

(7)
where B is the control matrix. If the average controllability is
high, it means that the brain is more efficient in moving into
many easily reachable states.

Global Controllability The global controllability of the linear
stable system is defined as the inverse of its H∞-norm, which
intuitively quantifies the maximal possible vector amplification
with sin(·) input. Mathematically, it is defined as

gc = (H∞)
−1 =

(
sup
ω∈R

σ{G( jω)}
)−1

(8)

where j is the virtual unit with j2 =−1, G(s) = (sI−A)−1B,
and σ denotes the largest singular value. A higher global con-
trollability then corresponds to a easier control of the dynamics
in the worst situation.

Global Synchronizability The global syncronizability refers
to the inverse spread of the Laplacian eigenvalues, which in-
tuitively measures the ability of the network’s dynamics to per-
sist in a synchronous state where all nodes have the same
magnitude of activity. Mathematically, it is defined as

sc =

√
d2(N−1)

∑
N−1
i=1 |λi−λ|2

(9)

where λi is the positive eigenvalues of the Laplacian matrix L
with Li j = δi j ∑k Aik−Ai j and d = ∑i ∑ j 6=i Ai j/N is the aver-
age strength of each node that plays the as a normalizer.

Results
We used the extensively preprocessed HCP data where the
group-ICA decomposition was applied to obtain the parcella-
tion and construct each region’s time series. The main results
here were based on the atlas of 50 regions with regard to the
limited length of paper. For detailed description of the prepro-
cessing and basic statistics of the subjects, please refer to the
manual book of HCP dataset1.

Distribution of Minimum Control Sets
We set the parameter α = 1 and computed the 1-minimum
control set for each subject. In Figure 1, we showed the z-
values of the frequency of a region to appear as a control
node across the population under the null hypothesis that ev-
eryone’s minimum control set consist of randomly chosen re-
gions. First we can see that the most consistent control ar-
eas are distributed broadly across the brain, including visual
regions in visual cortex, temporal lobe and premotor area.
Broadman area (BA) 06, 17, 18, 19, 21, 23, 40, 37, 47 are
involved. These area can be divided into two categories. The

1https://www.humanconnectome.org



Figure 1: Nodal Distribution in Minimum Control Sets. We
computed the probability of each region to be a control region
under the null hypothesis where the control regions are ran-
domly chosen, with respect to which we further calculate the
z-values of the frequency of a region appearing as the control
node across the full 1003 subjects. In this figure, we can see
that there exist some consistent control regions in the visual
cortex, temporal lobe and premotor cortex.

first group consist of sensory areas including BA 06, 17, 18,
19, which might be understood as local executive hubs. The
second group are composed of integrating area including 21,
23, 40, 37, 47, which could be playing the gating roles among
multiple functional modules. These functional control regions
also display a certain level of similarity to the optimal con-
trollers predicted from the structural connectivity matrices(Gu
et al., 2017).

Relationship Among Controllability Measurements
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Figure 2: Correlations Among Controllability and Syn-
chronizability for Functional Networks. In this figure, we
computed the average controllability, the global controllabil-
ity and the synchronizability for the fitted functional dynamics
of human brains. Their relationships were quantified with the
Spearman correlations. We can see that (A) the global and
average controllability display very strong negative correlation
which also suggests a nonlinear correspondence, while the
synchronizability shows (B) a fairly significant negative corre-
lations with the the average controllability and (C) a weakly
significant negative correltions with the global controllability.

We used the square root of the full noise covariance matrix

as the control matrix B and computed the average controlla-
bility, the global controllability and the synchronizability. The
strong negative correlation between the average and global
controllability suggests that if a brain system is efficient in
reaching many states, the ability of amplifying the activation
amplitude through the its dynamics is then weakened as the
energy is more likely to spread over instead of accumulate in
certain mode. Another observation is that the synchronizabil-
ity is not as significantly correlated to either average or global
controllability as show in (Tang et al., 2017). This could be
caused by the different normalization on the transition matri-
ces and distinguished setting of control matrices.
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