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Abstract
The mechanisms underlying evidence accumulation in
perceptual decision-making tasks have been the subject
of much research. However, existing studies differ in their
conclusions on whether the brain weighs evidence op-
timally over time, or whether it exhibits biases towards
evidence presented early (primacy) or later (recency) in
the trial. We resolve this discrepancy in the literature by
proposing that previous tasks differ in how task-relevant
information in the stimulus is partitioned into “sensory in-
formation” and “category information.” We demonstrate
that similar stimulus-dependent biases arise naturally
in two common models of approximate inference: neu-
ral sampling-based inference, and parametric inference
(Variational Bayes). Finally, we test our model by design-
ing a psychophysics task that systematically trades off
these two sources of uncertainty in the stimulus against
each other while keeping all other aspects of the task the
same. We find that subjects’ evidence-weighting strate-
gies change in the predicted direction and in a highly ro-
bust fashion, individually significant for every one of our
10 subjects.
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Introduction
Quickly categorizing and acting on perceptual information is a
crucial function of the brain. To elucidate the mechanisms un-
derlying this ability, psychophysics studies often present sub-
jects with noisy or ambiguous stimuli that must be integrated
before a subject can make an informed categorical decision.
A classic example is the motion-dots task, in which a subject
views an aperture of drifting and flickering dots and has to re-
port whether the dots are moving to the right or left. Crucially,
a single “frame” of motion only gives weak evidence about the
correct choice, but by integrating over many frames subjects
are able to better discriminate left from right motion (Gold &
Shadlen, 2007). Note that our use of “frame” is not restricted
to visual stimuli, but refers to the rapid, sequential presenta-
tion of independent stimuli in any modality.

In this and other commonly used tasks, each frame is on av-
erage equally predictive of the correct choice, hence optimal
performance requires weighting each frame equally to arrive
at a decision. The actual weights used by a given subject in a
given task can be measured using reverse correlation. Exist-
ing studies differ greatly in their findings, with temporal weight

profiles ranging from decreasing (early evidence is weighed
most strongly – a primacy effect) (Nienborg & Cumming, 2009;
Kiani, Hanks, & Shadlen, 2008) to constant (as would be opti-
mal) (Wyart, Gardelle, Scholl, & Summerfield, 2012; Brunton,
Botvinick, & Brody, 2013), to increasing (most recent evidence
is weighed most strongly – a recency effect) (Drugowitsch,
Wyart, Devauchelle, & Koechlin, 2016). An ideal observer, by
definition, cannot explain these systematic biases. Further-
more, existing accounts for any one of these biases (“inte-
gration to bound” to explain early weighting, or “forgetting” to
explain late weighting) only provide explanations for subsets
of the experiments, unable to account for their difference, or
under what circumstances which effect should dominate.

Here, we make three novel contributions. First, we observe
that previous tasks differ in the nature of the uncertainty in-
troduced into the stimulus in order to make the task difficult
for the subject, and we show that those differences are pre-
dictive of the kind of bias found in prior studies. Second, we
present the results of an experiment in which the stimulus is
systematically varied only along the axis that we hypothesize
to determine the subject’s bias. While previous studies dif-
fered widely in sensory modality, subject species, and task-
relevant variable, here we confirm the effect of stimulus de-
sign on measured evidence-weighting strategy on an individ-
ual subject level. Third, We demonstrate how these biases
can emerge naturally from the very same approximate infer-
ence algorithm to perform the task. In particular, we show
that two approximate inference models, based on the MCMC
Sampling and Variational Bayes algorithms, both exhibit a pri-
macy effect for the same kind of stimulus that produces such
a bias empirically. Both model families have been previously
proposed as plausible inference mechanisms by neural cir-
cuits (Fiser, Berkes, Orbán, & Lengyel, 2010; Pouget, Beck,
Ma, & Latham, 2013; Haefner, Berkes, & Fiser, 2016; Raju
& Pitkow, 2016). We further show that either explicitly trying
to compensate for that bias, or allowing for some noise in the
brain’s decision-making circuits, will lead to a recency effect
specifically for stimuli used in those experiments that find con-
stant weights or recency effects. Either of our approximate
inference models is able to explain the full range of primacy to
recency effects seen in previous studies.

Results
‘Sensory Information’ vs ‘Category Information’
Normative models of two-alternative choice tasks usually be-
gin with the ideal observer, who uses Bayes’ rule to infer the



best choice on each trial given the stimulus. On a given trial, if
the evidence in frame f is ef and the (correct) categorical iden-
tity of the stimulus is a binary variable C ∈ {−1,+1}, then
evidence in favor of C = +1 after F independent frames is

p(C =+1|e1, . . . ,eF) ∝ p(C =+1)
F
∏
f=1

p(ef|C =+1).

The ideal observer’s performance is limited only by (1) the
information about C available on a single frame, proportional
to p(ef|C), and (2) the number of frames per trial. In the case
of the brain, a decision-making area computing a belief about
the correct choice only has access to a sensory representa-
tion of the stimulus, which we call x, not to the outside stim-
ulus e directly. As a direct consequence, we can partition the
information between outside stimulus and choice into the in-
formation between outside stimulus and sensory representa-
tion, and the information between sensory representation and
choice (Figure 1b). We call these sensory information and
category information respectively. These two kinds of infor-
mation span a two-dimensional space with a task being de-
fined by a single point (Figure 1c).

Two well-known tasks (the dot motion task and the Poisson
clicks task) occupy opposite locations in the space spanned
by sensory and category information. In the classic dot motion
task, the sensory information is low since the evidence about
the direction of motion at any time is very small. The cate-
gory information, on the other hand, is high, since knowing
the “true” motion on a single frame would be highly predictive
of the correct choice. In the case of the Poisson clicks task,
the sensory information is high since each click is well above
threshold, while the category information is low since knowing
the side on which a single click was presented provides only
little information about the correct choice. To drive home this
distinction, consider an orientation discrimination task. Show-
ing multiple frames of high-contrast gratings of the same ori-
entation would constitute a task with high sensory information
(the orientation of each frame is clear) and high category in-
formation (knowing the orientation on any one frame would
determined the choice since all frames have the same orien-
tation). Reducing sensory information would mean making
each frame noisier (e.g. by reducing contrast or adding pixel
noise) and hence increasing the subject’s uncertainty about
the correct orientation for each individual frame – moving the
task left in our space. Reducing category information would
mean varying the orientation between frames and hence mak-
ing each frame less predictive of the correct choice – moving
the task downwards in our space (Figure 1c). Subjects will
be at threshold performance when the stimulus reaches some
level of trade-off between sensory and category information,
defining a line illustrated in Figure 1c.

A qualitative placement of prior studies in this space sug-
gests that studies that find early weighting are located in the
upper left quadrant and studies with equal or late weighting in
the lower right quadrant. A quantitatively precise placement
of each study is difficult since the quantitative partition de-
pends on the nature of x. Since prior studies differ in many

aspects like subject species (e.g. humans, monkeys, rats),
sensory modality (e.g. visual, auditory), sensory variable (e.g.
orientation, motion direction, depth), and stimulus parameters
like number of frames and frame duration, it is hard to draw a
definitive conclusion on whether there is a single variable that
determines the shape of the temporal weighting profile.

Visual Discrimination Task
To test our hypothesis that sensory information and category
information determine subjects’ evidence weighting strate-
gies, we designed a visual discrimination task that allows us
to independently manipulate both sources of information while
keeping all other aspects of the task constant (Figure 1i-j).

The stimulus in our task consisted of ten visual frames.
Each frame consisted of band-pass-filtered noise with excess
orientation power either in the −45deg or the +45deg orien-
tation (Nienborg & Cumming, 2014). Here, the excess ori-
entation power, parameterized by 0 ≤ κ < ∞, determines the
uncertainty over orientation for each frame (sensory informa-
tion). The probability, 0.5 ≤ p ≤ 1, that the orientation of any
one frame matched the rewarded choice corresponds to the
category information. The stimulus was presented as an an-
nulus around the fixation marker in order to minimize the effect
of small fixational eye movements. Using this stimulus, we ran
10 human subjects (7 naive, 3 authors) comparing two condi-
tions. Starting with both high sensory and high category infor-
mation, we either ran a staircase lowering the sensory infor-
mation (κ) until subjects reached threshold performance while
keeping category information constant (“noise” condition), or
we ran a staircase lowering category information while keep-
ing sensory information constant (“ratio” condition). For each
condition, we used regularized logistic regression to infer sub-
jects’ temporal evidence weighting profiles (Figure 1k-l).

In agreement with our hypothesis, we find predominantly
flat or increasing weighting profiles in the “ratio” condition,
and predominantly decreasing weighting profiles in our “noise”
condition. A within-subject comparison revealed that the
change in average slope between the two conditions was in-
dividually significant for every single subject.

Approximate Online Inference Explains Data
While these significant changes in evidence weighting for dif-
ferent stimulus statistics could reflect a fundamental change in
subjects’ strategies, we show here that they arise naturally in
common models of approximate inference proposed for the
brain. In particular, we show that both a neural sampling-
based approximation and a parametric (mean field) approxi-
mation to sequential decision-making induce a bias towards
overweighting early evidence when sensory information is low
and category information is high, as seen in the data (Figure
1e-h).

The central assumption in both models is that the brain
computes a posterior over both C and x given the external
evidence, i.e. p(x,C|e), not just over the variable C which hap-
pens to be task-relevant in our particular context. As a result,
the sensory representation encoding the brain’s belief about



x will depend both on the external evidence, e, via the like-
lihood, but also on the brain’s current belief about C, via the
prior. When the sensory representation is then used to update
the brain’s belief about C, care must be taken to not “double-
count” the current belief about C which appears both in the
belief update about C in the prior over x. We call this double-
counting a perceptual confirmation bias since it results in a
positive feedback loop between beliefs about a stimulus and
the percept.

As in the Sequential Probability Ratio Test (Gold & Shadlen,
2007), we assume the brain approximately computes beliefs
about the correct choice as

log
pf(C =+1)
pf(C =−1)

≡ log
p(C =+1|e1, . . . ,ef)

p(C =−1|e1, . . . ,ef)

= log
pf−1(C =+1)
pf−1(C =−1)

+ log
p(ef|C =+1)
p(ef|C =−1)

= log
pf−1(C =+1)
pf−1(C =−1)

+ log
∫

x p(ef|x)p(x|C =+1)dx∫
x p(ef|x)p(x|C =−1)dx︸ ︷︷ ︸

update per frame

(1)

where the last line makes explicit the need to marginalize over
beliefs about sensory variables x on each frame.

Neural sampling-based approximation Our first model
makes three crucial assumptions. First, as described above,
we assume that sensory areas of the brain represent a poste-
rior over x using the current belief about C as a prior. Second,
we assume that this posterior is represented by samples over
time. Note that these two assumptions alone do not yet pre-
clude exact inference; computing the integrals in equation (1)
via importance sampling gives an asymptotically exact update
rule that effectively accounts for the prior fed back from C to
x. Our third assumption in this model is that, due to a funda-
mental limit on sampling speed, the brain must rely on a small
number of samples per frame. These three assumptions are
sufficient to reproduce the transition from primacy to flat ev-
idence weighting as stimuli move from the low to high sen-
sory information regime along the threshold performance line
(Figure 1e-f). Including an active bias correction (subtracting
γ log pf(C=+1)

pf(C=−1) on each update, Figure 1g-h) or noise in evi-
dence accumulation (not shown) qualitatively reproduces the
full range of primacy to recency effects seen in the data.

Parametric approximation Our second model uses a para-
metric representation of both C and x, but makes the mean
field assumption that the posterior p(x,C|e) can be approxi-
mated by a factorized distribution, q(x)q(C). This assumption
is plausible for the brain because a central challenge for para-
metric approximations is the explosion of the number of pa-
rameters necessary to approximate joint posteriors over many
variables. As a result, it is commonly assumed that the brain
explicitly accounts for dependencies only between subsets of
variables, and not between variables represented by different
layers of the cortical hierarchy (e.g. sensory and decision ar-
eas) (Raju & Pitkow, 2016).

We simulated inference in this model with Variational
Bayes. As in the sampling model, we use the running pos-
terior estimate of pf(C) as a prior over x. This parametric
model displays the same behavior as the sampling model: a
transition from primacy to flat kernels as sensory information
increases, with recency effects emerging when a bias correc-
tion or noise in the decision-making area are added. Whereas
the limited number of samples was the key deviation from op-
timality in the sampling model, here it is the assumption that
the brain represents a factorized posterior over x and C.
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Figure 1: a) Possible temporal weight profiles for evidence integration tasks. b) The information between time-changing external
evidence, et , and category C can be split into “sensory information” between et and its sensory representation in the brain,
xt , and “category information” between the sensory representation and the correct overall choice. c) Any given task can be
thought of as a point in category-info versus sensory-info space. Previous studies finding primacy effects primarily reduce
sensory information to reach threshold; previous studies finding recency effects primarily reduce category information to reach
threshold. d) Simplified approximate inference model; dotted lines show generative model, solid lines show information flow
with our assumption that a posterior over xf is represented and evidence integration happens in a decision area representing
C. Unless prior information to xf can be completely “subtracted out” during the update of the belief about C, a positive feedback
loop emerges between C and x. e) Sampling model performance across the entire space of category and sensory information.
White line is threshold performance. Colored circles denote points used for the plots in g. f) (Normalized) temporal evidence
weighting of the sampling model at different points in the task space, computed using regularized logistic regression. Without
integration noise or a bias correction term, weight profiles vary between primacy and flat. g-h) Same as (e-f) but with a small
“bias correction” term (γ = 0.1) leading to a recency effect in the same part of space where it is seen in the data. Not shown:
Variational model shows same patterns as seen in (e-h). i) Example band-passed grating stimulus in the “ratio” task. Each frame
has a clear orientation, but orientations change from frame to frame. j) Example band-passed grating stimulus in the “noise”
task. All frames contain noisy rightward information. k) Temporal weighting strategy inferred for all subjects in the ratio task
(thin lines) and average across subjects (thick line) show consistent recency effects. l) Same as (k) but for noise task; subjects
consistently show primacy effect.
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