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Abstract: 

Brain network connectivity has been characterized 
during a variety of tasks and neurological/psychiatric 
diseases. Recently, various machine learning methods, 
including artificial neural networks, have used 
connectivity measures to predict cognitive or disease 
state. One area where these methods could be useful is 
in the prognosis of patients with disorders of 
consciousness (DOC). Previous work has used mental 
imagery tasks to assess DOC patient volitional ability, 
however no work has focused on incorporating 
machine learning methods to automatically detect 
awareness in these patients. The present study aims to 
establish a baseline for these methods in classifying 
mental imagery states. We developed a graph 
convolutional network classifier that can distinguish 
between mental imagery states in healthy subjects 
using only functional connectivity data. Furthermore, 
we examined whether certain large scale brain 
networks were more predictive than others, and found 
that frontoparietal control and default mode networks 
were most predictive of whether a participant was 
performing a mental imagery task or resting. These 
results demonstrate that graph convolutional networks 
could be developed to aid in detection of awareness in 
DOC patients and show that changes in connectivity 
patterns in frontoparietal control and default mode 
networks underlie alterations in mental imagery. 
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Introduction 

Changes in brain network connectivity using 
functional MRI have been characterized during a 
wide variety of disease states and behavioural 
paradigms (Bassett and Bullmore, 2009; Bullmore 
and Sporns, 2009). The past few years have 
seen increasing use of graph theoretical 

measures as a way to model these changes both 
during tasks and during resting state. Most 
recently, graph convolutional neural networks 
have been used to diagnose various 
neurological/psychiatric disorders using functional 
brain connectivity (Ira Ktena et al., 2017). 
Concurrently, mental imagery paradigms have 
been used to aid in the diagnosis and prognosis 
of patients with disorders of consciousness 
(DOC; Owen et al., 2006; Monti et al., 2010).  

The aim of the present study is to merge 
these two lines of research by applying deep 
graph convolutional neural networks (DGCNN) to 
classify brain network connectivity data of healthy 
participants while they perform a mental imagery 
task used in the assessment of patients with 
DOC. To achieve this we used the full brain 
connectivity graphs as well as individual 
canonical large scale brain networks as inputs to 
the network. This work will establish a baseline 
for DGCNN performance, with the aim of applying 
this method to patient groups in the future.  

Methods 

Participants and Paradigm Specifications 
Data was collected at the Wolfson Brain Imaging 
Centre at Addenbrooke’s Hospital, Cambridge, 
UK. Ethics for this study were obtained from the 
Cambridgeshire 2 Regional Ethics committee. 25 
healthy participants were recruited for the study 
(9 female; mean age = 35; range = 19-35 years). 
3 participants were removed due to excessive 
head motion during scanning.  



The behavioural paradigm consisted of 
five 30 second blocks where participants 
alternated between resting state and a motor 
imagery paradigm. In the motor imagery 
paradigm participants were instructed to imagine 
being on a tennis court and swinging their arm to 
hit a tennis ball to an instructor on the opposite 
side of the net (Monti et al., 2010). The beginning 
of the motor imagery paradigm was cued with the 
word “Tennis” appearing on the screen, and the 
beginning of the resting state paradigm began 
with the word “Rest” appearing on the screen.  

 
Data Acquisition and Preprocessing 
Data was acquired using a 3T Tim Trio Siemens 
system (Erlangen, Germany). We used a 12-
channel head matrix transmit-receive coil with a 
fast-sparse 32 slice axial oblique sequence 
(TR=2000ms, TE=30ms, flip angle=78°, voxel 
size = 3.0 x 3.0 x 3.0 mm3, matrix size 64 x 64, 
field of view 192mm x 192mm, slice thickness = 
3.0mm). We collected 150 EPI images in each 
subject’s run. T-1 weighted MPRAGE high-
resolution structural images were also acquired 
with 1.0 x 1.0 x 1.0 mm3 resolution (TR = 
2250ms, TI = 900ms, TE= 2.99ms, flip angle = 
9°). 

Preprocessing was performed with 
Statistical Parametric Mapping 12 (SPM12; 
http://www.fil.ion.ucl.ac.uk/spm/) and MATLAB 
version 2017a (http://www.mathworks.co.uk). 
Following motion correction in the functional 
dataset, the participant’s high-resolution structural 
images were coregistered to the mean EPI and 
segmented into grey matter, white matter and 
cerebrospinal fluid masks. Next the images were 
normalised to Montreal Neurological Institute 
(MNI) space resampled to a resolution of 2 mm3. 
Functional images were smoothed with a 6mm 
FWHM Gaussian kernel. To reduce residual 
movement-related and physiological artifacts, 
data underwent de-spiking with a hyperbolic 
tangent squashing function. Next the aCompCor 
technique was used to remove the first 5 principal 
components of the signal from the white matter 
and cerebrospinal fluid masks, as well as 6 
motion parameters and their first order temporal 
derivatives and a linear de-trending term. 
Functional images were then highpass filtered to 

remove low frequency fluctuations associated 
with scanner noise (0.009 Hz < f).  

Because deep learning methods need a 
large amount of training data, we augmented our 
data using dynamic functional connectivity. Each 
condition contained 75 volumes per run. We used 
50 volume-sliding windows across each condition 
to generate 25 correlation matrices per condition, 
per subject. 

Functional connectivity was calculated by 
computing the correlation coefficient between 
time series from each of the 118 cortical regions 
from the Lausanne parcellation. Each correlation 
matrix was binarized, keeping the top 20% of 
connections. We used the entire 118 region 
graph, as well as 6 large scale brain networks as 
input to the DGCNN. This allowed us to 
determine whether a specific large scale network 
is most important for classifying cognitive state. 
These networks included the auditory (Aud), 
default mode network (DMN), frontoparietal 
control network (FPCN), salience network (SN), 
somatomotor network (SM) and visual network 
(Vis). Node assignment to each network was 
calculated by overlapping each ROI with a 
network mask from Smith et al., 2009.  
 

Deep Graph Convolutional Neural Network 
The DGCNN is adapted from Zhang et al., 2018 
(https://github.com/muhanzhang/DGCNN) and 
consists of three sequential stages. 1) Graph 
convolutional layers to extract node connectivity 
features; 2) a SortPooling layer to sort node 
features and equate input features size for, 3) a 
series of classical convolutional and fully 
connected neural network layers to read the 
sorted graph representations and make 
predictions (Zhang et al., 2018).  
 The graph convolutional layers aggregate 
node information from neighboring nodes to 
extract multiscale graph substructures important 
for classification. Input to each graph 
convolutional layer includes A, an adjacency 
matrix, D, a diagonal degree matrix, X, a node 
information matrix with nodes in the rows and c 
node features in the columns, and W, a matrix of 
trainable parameters. Each layer contains four 
separate steps. First a linear transformation is 
applied to the node information matrix XW. This 



maps the c feature channels to c’ features in the 
next layer. The second step propagates node 
information to neighboring nodes. Step three 
normalizes each node’s feature vector. The fourth 
step applies a nonlinear activation function and 
outputs the graph convolution.  
 The SortPooling layer sorts the output of 
the graph convolutional layer so that node feature 
vectors are pooled together and outputted in a 
consistent order. This is important because the 
final 1D convolutional step is most effective at 
classification when features are presented in a 
consistent order. This final step consists of two 
layers of classical 1D convolutional layers, each 
with a convolutional layer, followed by a rectified 
linear unit activation function and maxpooling 
layer. This is followed by a fully connected layer 
and a softmax layer for classification. Each 
classification analysis was trained for 200 epochs  
with a learning rate of 0.0001. Of the 25 subjects 
in the dataset, 22 were used in the final analysis, 
due to excessive movement during scanning. The 
complete dynamic functional connectivity data 
from 4 subjects were randomly allocated to a test 
set so as to not overfit the classifier during 
training. 

Results 
 
We used a DGCNN to determine whether a 
specific large scale brain network was most 
predictive of cognitive state in healthy participants 
performing a mental imagery task. To assess the 
results of each binary classificaiton we used the 
following metrics: Precision (True positives/True 
Positives + False Positives), recall (True 
Positives/True Positives + False Negatives), F1 
Score (Harmonic mean of Precision and Recall) 
and the area under the receiver operating 
characteristic curve (ROC-AUC). The ROC curve 
is a plot of True Positive Rate against False 
Positive Rate for different cutoffs of a diagnostic 
test, and is a measure of tradeoff between 
sensitivity (true positive rate) and specificity (1 – 
false positive rate).  As our analysis has balanced 
classes (i.e. an equal number of examples for 
each cognitive state) the ROC-AUC was 
considered the most important metric (David & 
Goadrich, 2006). A comprehensive list of results 
can be found in Table 1.  

       
Table 1: Classification results for held out test data for 
each network input. 
 
We first examined whether we could accurately 
classify between Tennis Imagery and Resting 
states using a full cortical graph. This analysis 
resulted in a ROC-AUC of 0.595 on held out test 
data. We then used each of the large scale 
networks as input, and found that FPCN (ROC-
AUC = 0.885) and DMN (ROC-AUC = 0.793) had 
much higher ROC-AUC scores than the other 
networks, suggesting they alter their connectivity 
pattern the most between the mental imagery and 
resting state conditions (Figure 1). We also 
combined these two networks, including both 
within and between network connections as input. 
This however resulted in a slightly poorer 
classification with a ROC-AUC of 0.75. 

            
Figure 1:ROC Curve for A FPCN and B DMN. 



Discussion 
 
The present study used functional connectivity 
fMRI, a mental imagery task and a DGCNN to 
determine whether specific large scale brain 
networks were more predictive of mental imagery 
state.   

We first found that the full cortical graph 
could predict mental imagery state with modest 
accuracy. Interestingly, the full graph had a 
relatively high precision and recall, but a relatively 
low ROC-AUC. This is likely due to the fact that 
ROC-AUC is calculated using prediction 
probabilities (values ranging between 0 and 1) 
and not binary classification measure (either 0 or 
1). Essentially, this means that the full graph 
classification was often correct, however it was 
less confident in its decision. 

We also examined the predictive capacity 
of several large scale cortical brain networks. We 
found that FPCN and DMN were most predictive 
of whether a participant was performing the 
Tennis mental imagery task or resting. Previous 
work has shown that these networks dynamically 
interact during mental imagery tasks involving 
future planning (Gerlach et al., 2014). We also 
found that using both within and between DMN 
and FPCN connections as input features did not 
improve the ROC-AUC, suggesting that within 
network connections for each of these networks 
are the most important for classification. Notably, 
a previous study by Spreng et al. (2012) showed 
that the typically anticorrelated DMN and SN are 
modulated by FPCN, which flexibly couples to 
either network depending on whether the task 
involves internally or externally directed attention. 
Our findings are therefore in line with these 
results in that they show FPCN and DMN are 
most predictive of a mental imagery task involving 
the switching between two states where attention 
is directed internally.  

 The present study has focused only on 
healthy participants, however mental imagery 
tasks similar to the one used here have been 
used in the diagnosis and prognosis of patients 
with DOC (Owen et al., 2007; Monti et al., 2010). 
This work provides a method that could 
potentially be used to aid in the automated 
detection of awareness in these patients. Future 
work in this area could use more sensitive mental 

imagery tasks like movie-watching and  
incorporate more extensive preprocessing steps 
and deeper neural network architectures that 
could overcome the complexities of working with 
data from patients with brain damage.  
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