
A Procedural Roadblock
to Mechanistic Understanding of Neural Circuits

Venkat Ramaswamy (vramaswamy@ncbs.res.in)
Simons Centre for the Study of Living Machines,

National Centre for Biological Sciences,
Bangalore 560065, India.

Abstract
Neuroscience is witnessing impressive progress in tech-
niques for observing and interrogating neural circuits.
Advances include optical readout of neural circuit ac-
tivity, capability to optogenetically stimulate/silence sub-
sets of neurons in-vivo and ascertaining exact anatom-
ical connectivity, for increasingly larger neural circuits.
It is thought that progress in such technologies holds
promise in ultimately enabling us to understand mecha-
nistic computation in neural circuits leading to behavior.
Here, using techniques from Theoretical Computer Sci-
ence, we examine how many experiments are needed to
establish an empirical understanding of mechanistic cir-
cuit computation, for a fixed behavior. It is proved, math-
ematically, that establishing the most extensive notions
of understanding needs exponentially-many experiments
in the number of neurons, in general, unless a widely-
posited hypothesis about computation is false. To make
matters worse, the feasible experimental regime is one
where the number of experiments scales sub-linearly in
the number of neurons. Together, this suggests that such
a comprehensive understanding is de facto unknowable,
in general. Determining which notions of understanding
are algorithmically tractable, thus, becomes an important
direction for investigation.

A similar roadblock may exist in our quest to com-
prehensively understand contemporary deep neural net-
works as well.
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“But on principle, it is quite wrong to try founding a theory
on observable magnitudes alone. In reality, the very opposite
happens. It is the theory which decides what we can observe.”
– Albert Einstein

Neuroscience is making remarkable ongoing progress in
experimental techniques, at the present time. At the neuronal
and network level, advances include the ability to both image
activity in as well as to activate/silence subsets of neurons, all-
optically, in-vivo, in awake, behaving animals. Already, such
techniques are being applied to study (nearly) whole-brain
neural activity in zebrafish larva, C. elegans and hydra, al-
beit, currently, at low temporal resolution. Furthermore, con-
nectomics is enabling us to determine the precise structure
of these neural circuits. Presently, the connectome of the ne-
matode C. elegans and the larval tadpole C. intestinalis have
been fully reconstructed.

Indeed, ongoing national initiatives in the United States,
Japan, China and Korea have made accelerating the devel-
opment of these (and other) neurotechnologies, one of their
central goals. The general premise has been that such tech-
nologies will ultimately enable us to reach the goal of under-
standing how networks of neurons mechanistically perform
computations that lead to specific behaviors.

Empirically understanding mechanistic computation in
these neural circuits will require efficient algorithms for large-
scale (including whole-brain) neural circuit interrogation. The
algorithms will seek to prescribe the smallest number of ex-
periments necessary (that scale as a function of the number
of neurons in the network) towards this goal. An experiment,
for example, might entail perturbing activity of a subset of neu-
rons, while imaging their activity and attempting to elicit be-
havior. The specifics of the next experiment prescribed by
the algorithm could depend on the outcome of the current
experiment. Theoretical Computer Science has known, from
over half a century of work, that some problems have fast al-
gorithms whereas certain others provably require intractably
many steps of computation to solve, in general. It is as yet
unclear in which class of problems those pertaining to neural
circuit understanding fall in, although it has been suggested
(Koch, 2012; Kumar, Vlachos, Aertsen, & Boucsein, 2013)
that combinatorial explosion in number of interactions (among
other considerations) might present a challenge to this end.
Combinatorial explosion in the solution-space does not nec-
essarily imply algorithmic intractability, and therefore the ques-
tion has remained largely open.

Here, using techniques from Computational Complexity
Theory, we ask what is the smallest number of experiments
necessary, in general, in order to arrive at a comprehensive
empirical understanding of neural circuit computations that
lead to a fixed behavior, in a hypothetical experimental setting.
We find that no general algorithms exist to solve this class of
problems that always use sub-exponential number of experi-
ments in the number of neurons, unless the complexity class
P = N P 1. If, remarkably, P = N P were true, it would mean
that hundreds of problems – many of them commercially im-
portant and extensively studied for decades – would have sub-
exponential algorithms, where none have been found to date.
Performing exponentially-many experiments in the number of
neurons would lead one to require more experiments than the
estimated number of atoms in the observable universe, even

1The hypothesis mentioned in the abstract (that is widely thought
to be true) is that P 6= N P .



for modest-sized nervous systems – rendering it an impracti-
cable undertaking. The exposition here will focus on the main
ideas and intuition behind the methods; we skip a number of
essential details for want of space.

Experimental scenario

The experimental scenario we have in mind is one where we
have an individual animal that has been trained to do a certain
behavioral task and we wish to obtain a comprehensive mech-
anistic understanding of how its neural circuits (acutely) cause
this behavior to be manifested at the present point in time.
This understanding must be a causal account and also en-
compass the degeneracy that has been associated with neu-
ral computations (Edelman & Gally, 2001). For simplicity, we
consider behaviors with a binary behavioral readout2. For in-
stance, a possible task could be discriminating two odors A
and B by a trained animal, wherein our goal is to obtain an un-
derstanding of how mechanistic computation in neural circuits
currently causes the animal to recognize odor A and perform
the correct behavior to indicate the same. For the sake of
analysis, we will assume that we have access to its entire ner-
vous system, where we have the ability to, for example, image
activity in and stimulate/silence subsets of neurons and we
know its connectome, although the main result is largely inde-
pendent of the specific experimental capabilities/technology at
hand.

Understanding mechanistic computation

What does it mean to understand mechanistic computation in
neural circuits? There is as yet no standard definition of under-
standing in this context and conceivably, there exist multiple
concomitant descriptions constituting notions of understand-
ing that might, for example, include details spanning different
spatial/temporal scales. We wish to have our theory be ap-
plicable to a wide variety of such notions. A characteristic
of understanding is the ability to answer questions about the
subject of understanding, in short order. A notion of under-
standing might be considered more extensive than another if
a description corresponding to the former can so answer a
larger repertoire of questions, than is the case with the lat-
ter. Accordingly, the most extensive notions of understanding
– which we will call comprehensive notions of understanding –
ought to enable us to answer certain central questions about
mechanistic computation in the circuit leading up to behavior.
We will posit one such central question that involves deter-
mining a certain subset of neurons that causally participate
in computations leading to the said behavioral readout. This
general, if seemingly unusual, approach is a key step in prov-
ing the result, as the reader will soon see. Some definitions
follow, to make this precise.

Definition 1 (Degenerate Circuit). A subset N of neurons is
said to constitute a degenerate circuit for a behavior B, if B can

2Strictly speaking, we only require a way of partitioning possible
behaviors into two classes.

be successfully elicited (with respect to the behavioral read-
out) by the silencing of all neurons, except those in N.

Now, it is possible that whether a subset of neurons forms
a degenerate circuit for a certain behavior or not might be a
function of the current state of the network, which we could
mean to include a variety of phenomena including the dynam-
ical state of the network, stochastic variability, plasticity, neu-
romodulation or even neuroimmunological and other consid-
erations that might contribute to trial-to-trial variability in the
neural circuits. We will assume the availability of an oracle
that will guarantee that the neural circuit is in the exact same
state before the beginning of each trial, since we wish to un-
derstand mechanistic computation in the circuit at the present
point in time, embodying a single state. This is a fairly routine
construct in Theoretical Computer Science, where one often
shows that even with such strong capabilities, certain things
are hard to do. Going forward, we will assume that the state is
so fixed in each instance. Note that this does not compel the
algorithm to use the oracle. We now define another notion.

Definition 2 (Minimal Degenerate Circuit (MDC)). A subset N
of neurons is said to constitute a minimal degenerate circuit
for a behavior B, if N constitutes a degenerate circuit for B and
furthermore no proper subset of N is a degenerate circuit for
B.

There exists at least one MDC with respect to each behav-
ior, although there are likely many. It is interesting to deter-
mine the neurons that are present in every MDC; we call this
set of neurons the vital set of neurons for that behavior (with
respect to said behavioral readout).

Definition 3 (Vital Set). A subset N of neurons is said to con-
stitute the vital set of neurons for a behavior B, if N is the
intersection of every MDC for B.

This vital set is especially of interest; it follows that it is ex-
actly the set of neurons, with the property that silencing any of
them will extinguish the said behavior3. For example, silenc-
ing the T4/T5 cells in Drosophila using temperature-sensitive
shibire has been shown (Bahl, Ammer, Schilling, & Borst,
2013) to completely abolish the optomotor response. We
therefore posit that any notion of understanding that claims
to be comprehensive ought to allow us to determine this set
fairly quickly.

Definition 4 (Vital Set problem). Given a whole-brain and a
behavior B, determine the vital set for B.

Thus, more precisely, we define a notion of understanding
to be comprehensive, if from its description one can quickly
(i.e. in number of steps that scale as a polynomial in the num-
ber of neurons) determine its Vital Set for the said behavior.
The definition utilizes the notion of a reduction, which is funda-
mental in Theoretical Computer Science. Informally, a reduc-
tion is a recipe to quickly convert any instance of one problem
(Problem A) into an instance of another problem (Problem B),

3The vital set could be an empty set. Even if this is the case, it
would be useful to know that to be the case.



such that a solution to Problem B can be quickly mapped back
to a solution of Problem A as well. Therefore, the existence
of an efficient algorithm for Problem B immediately implies the
existence of an efficient algorithm for Problem A, via the re-
duction. More profoundly, if there exists no efficient algorithm
for Problem A, the reduction implies that Problem B cannot
have an efficient algorithm either; otherwise there would be a
logical contradiction.

The definition of comprehensive understanding above,
thus, asserts that there exists a reduction from the Vital Set
problem to the stated problem of determining (any notion of)
comprehensive understanding. We will end up showing that
the Vital Set problem is hard to solve using number of exper-
iments that scale as a polynomial in the number of neurons,
which implies that the comprehensive understanding problem
is likewise. Towards this end, we define another problem.

Definition 5 (k-Vital Set problem). Given a whole-brain, a be-
havior B and a positive integer k, is the Vital Set for B of size
k?

There is a straightforward reduction from the k-Vital Set
problem to the Vital Set problem. The reduction involves solv-
ing the corresponding instance of the Vital Set problem, count-
ing the number of neurons in the obtained Vital Set, and an-
swering if it is of size k.

Next, we establish a reduction from k-CLIQUE – a known
N P -complete problem – to the k-Vital Set problem, which
shows that the k-Vital Set problem is in fact an N P -hard prob-
lem. This implies that no general sub-exponential algorithms
exist for any of the problems participating in the aforemen-
tioned reductions, unless P = N P .

The clique of an undirected graph is a subgraph of it, such
that every pair of vertices in that subgraph has an edge be-
tween them. The k-CLIQUE problem seeks to determine if a
given graph has a clique of size k. Our reduction, in effect,
will provide a quick recipe to construct a neural circuit from a
given undirected graph, with the guarantee that the graph will
have a clique of size k, if and only if the said neural circuit has
a Vital Set of size k+2. The simplest version of the construc-
tion has a single “sensory” and a single “motor” neuron. The
sensory neuron signals the arrival of the pertinent stimulus by
firing a single spike and the motor neuron, likewise, signals
execution of the said behavior by firing a single spike (Figure
1).

The “interneuron” circuit connecting the sensory and motor
neuron is constructed from the undirected graph by having a
neuron in place of each graph vertex and bi-directional4 con-
nections whenever there is an undirected edge between ver-
tices. Additionally, there is a coincidence-generator made up
of two neurons that also connects the interneuron circuit to the
motor neuron. The synaptic responses are set up in order to
result in three properties: (a) The entire circuit forms a degen-
erate circuit for the behavior. (b) The undirected graph has a k-

4Bi-directional connections are not central to this construction.
One could have a more complicated construction, where the num-
ber of bidirectional connections is arbitrarily small (details skipped).

Figure 1: A schematic of the neural circuit that the reduction
constructs, given any undirected graph. The interneuron cir-
cuit is what differs in the neural circuit for each given undi-
rected graph.

clique, if and only if the circuit formed by the corresponding in-
terneurons plus the coincidence-generator neurons, sensory
and motor neuron form a minimal degenerate circuit of size
(k+ 4) for the behavior. (c) The circuit, by design, does not
have a degenerate circuit of size less than (k+ 2). We skip
the rest of the details of the construction, for want of space.
What the reduction from k-CLIQUE to k-Vital Set establishes
is that if there were a general algorithm that always solved k-
Vital Set with a sub-exponential number of experiments, that
could be used to construct an algorithm using sub-exponential
steps for k-CLIQUE as well and in turn for every N P -complete
problem, implying that P = N P . We have proofs establishing
that a few other related problems are N P -hard as well (de-
tails skipped). This implies that notions of understanding that
these problems reduce to are algorithmically hard to establish
as well; the k-Vital Set Problem isn’t the only such algorith-
mically hard question. Another interesting consequence of
this reduction is that, even if one had an exact simulation of
the entire neural circuit (or the whole-brain), extracting a com-
prehensive understanding needs exponentially-many steps, in
general, unless P = N P .

An important potential caveat is that the analysis above –
as is typical in Computational Complexity Theory – is of the
worst-case. That is, the theory implies that there is a sub-class
of neural circuits that provably require exponentially-many ex-
periments for the said problems, unless P = N P . Worryingly
though, this sub-class of circuits is a rather simple-looking one
that maps stimulus to response, while potentially being medi-
ated by a smaller degenerate circuit.

The above result raises the question of what notions of
understanding – even if they might not be comprehensive –
are experimentally establishable, in practice. This is a foun-
dational question that will likely require extensive study. But
first, we need to consider the question of how the number



10
2

10
4

10
6

10
8

10
10

10
12

10
0

10
2

10
4

10
6

10
8

10
10

10
12

Number of neurons

A
v
e
ra

g
e
 l
if
e
s
p
a
n
 (

s
e
c
o
n
d
s
)

 

 

Data

log x

x

x
2

x
3

2
x

Figure 2: A log-log plot of estimates of the average lifespan
as a function of (estimated) number of neurons in the nervous
system for C. elegans, fruit fly, mouse, octopus, marmoset,
Human, Chimpanzee, Rhesus monkey and Elephant. The plot
suggests that running even a linear number of experiments in
the number of neurons for most organisms would need time
that exceeds their expected lifetime.

of behavioral-timescale experiments ought to scale with the
number of neurons, for it to be realizable, in practice. We plot-
ted (Figure 2) the average lifetime of a number of organisms
as a function of the estimated number of neurons in the central
nervous system. Superimposed on this plot is the amount of
time it would take to finish an experimental protocol that scales
as certain functions in the number of neurons, assuming each
experiment takes a second (corresponding to the behavioral
timescale) and there is no gap period between successive ex-
periments – both conservative assumptions. From this plot, it
is immediate that, for most organisms, an experimental pro-
tocol that uses even a linear number of experiments requires
time roughly equal to the average lifetime of the animal – ren-
dering such a protocol infeasible, in practice. Thus, not only do
the most extensive notions of empirical understanding seem
to need exponentially-many experimental steps, the regime for
realizable algorithms is one that uses a sub-linear number of
experiments – a significantly more stringent prospect.

Discussion

The results here suggest that in addition to current technolog-
ical barriers, there exists another fundamental roadblock – a
procedural one – to neural circuit understanding. Specifically,
the most extensive notions of understanding might elude us,
in general. This has intriguing philosophical implications in our
quest to understand the brain.

To be sure, we haven’t already encountered this roadblock.
The current neurotechnological renaissance will likely lead to
a significantly enhanced understanding of the brain. That said,

it is arguably only a matter of time before the ambition of our
questions approaches this barrier. In the meanwhile, demar-
cating the boundary between algorithmically tractable and in-
tractable notions of neural circuit understanding will be an im-
portant new foundational direction for investigation in Neuro-
science.

The question of mechanistically understanding contempo-
rary deep neural networks shares many parallels with the
question of so understanding biological neural circuits. We do
not yet understand either to any reasonably comprehensive
degree – in spite of the remarkable fact that we can manip-
ulate deep networks at will. Like in Systems Neuroscience,
there has been a genre of work in deep neural networks
(e.g. (Erhan, Bengio, Courville, & Vincent, 2009; Li, Chen,
Hovy, & Jurafsky, 2015)) focused on attempting to understand
these networks via a study of selective neurons/units. On the
other hand, more recent work (Morcos, Barrett, Rabinowitz,
& Botvinick, 2018), has suggested that in networks that gen-
eralize well, such selective neurons are no more important
for network performance than non-selective neurons, arguably
bringing us back to (conceptual) square one. While our results
here do not directly map to contemporary deep networks, we
close by speculating that an analogous roadblock may exist
with deep networks as well. This direction, therefore, merits
further investigation.
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