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Abstract
How do ensemble representations subvert well-
established perceptual capacity limits, such as attention
and visual working memory? Here we ask if an off-
the-shelf texture statistics representation can explain
ensemble judgments, without explicitly representing and
measuring objects. We found that an ideal observer
using only texture statistics was able to perform an
ensemble mean size comparison task as well as hu-
mans, and further, that this model replicated previously
unexplained human perceptual biases. This means that
the virtues of ensemble representations could actually
be due to the compressive power of texture statistics.
We thus present the first generalizable computational
account of ensemble perception, while also explaining
a long-standing mystery about limitations on human
performance in ensemble tasks.
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Introduction
How do people make judgments about scenes with many
items? On one hand, visual cognition seems severely limited
by precious attention and working memory resources. On the
other hand, most of us can navigate a grocery store, despite
each aisle containing a multitude of goods for sale. Potter
(1976) and others have demonstrated that we can meaning-
fully understand detailed real-world scene information in less
than 100ms. What representations could support such fast
scene perception?

Ensemble Representations
Ariely (2001) proposed that sets of similar items could be
stored compactly by summary statistics—for example, the
items’ mean and variance—of properties like size, position,
and color. These ensemble representations are thought to
support scene gist perception and to guide eye movements
and attention deployment. Following a series of experiments
on mean circle size judgments, as shown in Figure 1 (Chong
& Treisman, 2003), others have found that ensemble averag-
ing can apply to high-level judgments like mean emotion of
a set of faces (see Whitney & Yamanashi Leib, 2018, for a
review). Thus far, the only mechanisms proposed for ensem-
ble representations have implied multiple parallel pre-attentive
pathways operating on the level of objects (Alvarez, 2011). In
this light, ensemble representations can seem a bit too good
to be true, even if the phenomenon of ensemble perception

(i.e., human performance on ensemble tasks) is agreed upon.
What mechanisms explain ensemble task performance?

Modeling the Set-size Effect

It has been found repeatedly that human performance suffers
somewhat when comparing sets of unequal size, manifest-
ing as a bias to choose the set with more items as having
larger mean size (Chong & Treisman, 2005; Sweeny, Wur-
nitsch, Gopnik, & Whitney, 2015). We have previously shown
that this bias is systematic (Cain, Dobkins, & Vul, 2016), af-
fecting participants’ point of subjective equality (Figure 2A).
This set-size effect casts doubt on object-based accounts of
ensemble perception, but no model yet accounts for it.

Figure 1: (Top) Classic two-alternative forced choice ensem-
ble perception experiment. (Bottom) Cain, Dobkins, and Vul
(2016) compared equal (6&6 and 12&12) versus unequal
(6&12 and 12&6) set-sizes.

What representations could account for this set-size bias?
Is individuating or registering objects truly necessary? Since
high-level object-based accounts cannot explain the set-size
bias, we consider low-level and mid-level representations that
can be computed on any image (i.e., “image-computable”). In
particular, we consider a powerful texture statistics represen-
tation (Portilla & Simoncelli, 2000) within an ideal observer
framework for modeling the set-size bias. A texture repre-
sentation makes sense as the mechanism behind ensemble
performance, as capacity limitations cannot apply to any rep-
resentation that does not individuate or register objects.

We found that this texture representation neatly accounts
for human performance in the classic larger-mean-size task.
This mid-level representation provides the first principled
explanation of the set-size bias. Overall, we present
the first image-computable approach to modeling ensem-



ble perception, and provide hints that these mid-level sta-
tistical representations—rather than object-based accounts—
underlie high-level ensemble judgments and support rapid
scene perception.

Results
Object-based, high-level accounts predict that no human per-
ceptual bias is induced by unequal set-size comparisons on
the larger-mean-circle-size task. However, participants per-
ceived sets with more items as having larger mean, which
shifted their psychometric curves. We measure this bias us-
ing the point of subjective equality (PSE), the log mean-ratio
at which the sets are perceived to have equal mean diame-
ter. Can low-level or mid-level representations better account
for human PSE shifts in the unequal condition? We consider
a low-level luminance representation and a mid-level texture
statistics representation. For each of these candidates, we
construct ideal observer models, generate trial-by-trial pre-
dictions, and fit psychometric functions separately for equal
and unequal conditions to extract the model’s PSE shift. We
evaluated models by comparing their PSE shifts to those of
20 participants. This allowed us to determine which of these
non-object-based representations yielded PSE shifts consis-
tent with human set-size bias.

Low-level Luminance Representation
Could luminance in each visual field predict mean size judg-
ments? We computed luminance in each visual field (i.e., the
total area of the items in each ensemble). Taking the simplest
possible model, we selected as larger the side with greater
luminance. Of course, for equal set-size trials, this luminance
heuristic is perfectly correct. For our unequal set-size trials,
the heuristic induces a PSE shift toward the side with more
items. However, the size of this bias is too extreme: an en-
semble with six items would need to have circles that are twice
as large on average than an ensemble with twelve items. Hu-
mans PSE shifts are significantly less shifted than this esti-
mate (t(19) =−10.553, p < .001). Since this one-parameter
luminance model overpredicts the PSE shift induced by un-
equal set-sizes, we conclude that this is not a good model of
human ensemble perception.

Mid-level Texture Representation
Next, we asked if an ideal observer trained on Portilla and
Simoncelli (2000) texture statistics can replicate human PSE
shifts. This representation compresses an image into about
2500 image statistics which were inspired by physiological
findings in primary visual cortex. Since we believe that en-
semble perception relies on texture representations, we ex-
pect stimuli with discriminably different means to have dis-
criminably different texture statistics. For simplicity, we as-
sumed a single pooling region per visual field, covering each
ensemble. This is akin to a visual system with two receptive
fields: one computing texture statistics in the left periphery,
and one in the right periphery. For each trial, we computed
texture statistics in each pooling region, and then subtracted

to construct the trial’s feature vector: T∆ = TL − TR. Then
we trained a linear support vector machine (SVM) to perform
the mean size task, using the difference-of-statistics features,
on the 48 easiest trials (Equal condition only, 2-to-1 ratio of
mean circle size). We then used the linear classifer to gen-
erate predictions for the remaining 768 held-out trials (Equal
and Unequal). Using the same analysis workflow as for the
human data, we fit a cumulative gaussian to obtain the ideal
observer model’s own psychometric curves. As seen in Fig-
ure 2B, this ideal observer’s PSE shift is similar to the human
group-level PSE shift (t(19) = −1.285, p > .05). Therefore,
the texture representation—without any parameter tuning or
fitting—contains sufficient information to do ensemble tasks.
Crucially, our ideal observer reproduces the set-size bias us-
ing a linear readout of texture features.

Figure 2: Psychometric curves for each trial type, with the
point of subjective equality (PSE) marked by large open di-
amonds. (A) group-level human data (20 participants ×
1600 trials), (B,C) texture-based ideal observers, and (D) a
luminance-based ideal observer. (A) Set-size effect: unequal
set-sizes conditions have non-zero PSE shifts, gray bars. (B)
T full uses the full Portilla and Simoncelli (2000) texture model.
(C) T cov retains second-order texture statistics. (D) T lum uses
only multiscale luminance image statistics.

Texture Statistics in “Higher-Order” Ensembles

Could texture statistics plausibly explain high-level ensemble
perception? Since it is image-computable, a texture repre-
sentation could subserve both “low-level” and “high-level” en-
semble tasks. If synthetic images that are generated from the
statistics of an ensemble of faces do not allow emotion ex-
traction, then texture statistics may not underlie processing of
high-level ensembles.

To demonstrate the rich information captured by texture



statistics, we extracted Portilla & Simoncelli statistics from two
grids of faces used by Haberman, Lee, and Whitney (2015).
One ensemble is more happy (and has lower emotion vari-
ance) than the other ensemble. Figure 3 shows texture syn-
theses based on those original images.1 Upon inspection,
the synthesis based on the happier ensemble appears hap-
pier. This proof-of-concept demonstrates that texture statis-
tics, even in a single pooling region, are sufficient to support
ensemble emotion perception.

Figure 3: Texture representations of face ensembles preserve
emotion information. The crowd in (A) is less happy on aver-
age than the crowd in (B). This is also apparent in correspond-
ing texture syntheses: (C) was constrained to match the Por-
tilla and Simoncelli (2000) statistics of (A), and (D) was con-
strained to match (B). [(A) was taken from Figure 1 in Haber-
man, Lee, and Whitney (2015), used with permission. (B) was
created by repeating the last column of (A) four times.]

Reduced Texture Models
Returning to the mean circle size task, would lower-order sta-
tistical representations suffice for the ideal observer model?
We trained two new SVMs: one with first- and second-order
statistics only, T cov (about 400 features), and one with multi-
scale luminance only, T lum (16 features). We generated pre-
dictions from both models, and extracted each model’s PSE
shift. To our surprise, T cov gave identical predictions and PSE
shift as the full higher-order texture statistics (see Figure 2C).
T lum’s PSE shift was too big (t(19) = −13.554, p < .001),
overestimating human bias: compare Figures 2A and 2D.
Therefore, second-order texture statistics are sufficient to ex-
plain human performance on our task, and multiscale lumi-
nance measurements are insufficient. To be clear, we believe

1Different hyperparameters were used here than in the mean-
circle-size analysis. A suitable size of the steerable pyramid was
determined for the less-happy image, and these same hyperparam-
eters were applied to the more-happy image.

that the true encoding mechanism—full-field texture statistics
in many pooling regions that scale with eccentricity, like in
Balas, Nakano, and Rosenholtz (2009) and Freeman and Si-
moncelli (2011)—includes the higher-order statistics for each
of many pooling regions. But the dimensionality of the de-
coding mechanism necessary to perform our particular task
happens to be at most second-order.

Discussion

We found that a texture statistics representation provided suf-
ficient information for a linear classifier ideal observer to repli-
cate human biases on a mean size comparison task. Our re-
sults indicate that the puzzling set-size bias is a natural conse-
quence of using a texture statistics representation. Because
texture statistics can capture human successes and failures
in a classic ensemble task, we conclude that a mid-level tex-
ture representation underlies ensemble perception phenom-
ena. This is why performance on ensemble tasks is so much
better than object-based representations and their capacity-
limited accounts would allow. Our evidence supports the idea
that fast scene perception is made possible by texture repre-
sentations (Rosenholtz, 2015).

Thus far, we have only verified the superiority of texture rep-
resentations for one ensemble computation, mean circle size.
We do not yet know if it will generalize to face stimuli, or to
other ensemble computations such as variance, but this work
is in progress. Furthermore, our approach, while productive in
some contexts, cannot represent arbitrary scenes with large
variation in local texture statistics. For this, one would need a
richer texture representation in which statistics are computed
within many pooling regions (Balas et al., 2009; Freeman & Si-
moncelli, 2011). Our purpose was to demonstrate the surpris-
ing representational power of texture statistics, so we chose
a minimal two-pooling-region surrogate. As a consequence,
some ensemble phenomena may not be captured well, for
instance, outlier rejection. Outlier items produce more local
variation in texture statistics, so it remains to be seen how
their contributions would be incorporated.

Our approach is image-computable, meaning that this rep-
resentation can, in principle, be computed on any image. Fur-
thermore, we combine these fixed mid-level statistical encod-
ings with task-dependent decoding. This two stage encoding-
decoding approach can be applied flexibly to different tasks,
just by training a new classifier, enabling new approaches to
rapid scene understanding. For instance, our two-stage ap-
proach gives us a different perspective on the question of
how domain-general ensemble processing might be. Haber-
man, Brady, and Alvarez (2015) examined correlations be-
tween participants’ performance on low- and high-level en-
semble tasks, concluding that there must be multiple separate
levels of ensemble representation. However, we have disso-
ciated encoding (representation) from decoding (task-specific
readout). In our view, there is a single domain-general encod-
ing mechanism: texture representation. The finding of Haber-
man and colleagues of uncorrelated task performance could



be due to independent readout mechanisms for color, orienta-
tion, face identity, etc. Because the encoding is not hierarchi-
cal, the readout mechanisms need not be correlated.

We have presented an account of ensemble perception
that already has the properties needed for a parallel pre-
attentive pathway. Texture computation is not subject to cog-
nitive capacity limits—it is merely a biologically-plausible (Por-
tilla & Simoncelli, 2000; Balas et al., 2009) image compres-
sion scheme. A texture-based mechanism behind ensemble
perception may seem surprising, since these computations do
not operate on objects or even parts of objects (Whitney & Ya-
manashi Leib, 2018). But texture statistics can be computed
for any portion of a scene, even if it happens to contain objects
(Rosenholtz, 2015). This information represents the visual in-
put well under the same conditions as required for ensemble
perception (e.g., items are indistinct; see Ariely (2001)). Now
we have evidence that ensemble phenomena could be readily
explained by rapidly-computed mid-level statistics, clarifying
how ensemble perception works.

Furthermore, we have provided a parsimonious explana-
tion for a long-standing mystery. The set-size effect has been
ignored in the literature, despite being inescapable in experi-
mental settings. To our knowledge, it has only been reported
for mean circle size comparisons. But, by definition, it must
contaminate other response modes (e.g., Method of Adjust-
ment), and it could in principle arise in high-level ensemble
tasks as well. Crucially, we were able to address this problem
without relying on the concept of objects, and without denying
the existence of rapid perceptual faculties. While others de-
bate capacity limits in order to place all ensemble represen-
tation findings within the realm of object representation, we
instead interpret them as special cases of texture represen-
tation. Based on our success in modeling the set-size bias
via texture representations, we suggest that the broader goal
of understanding scene perception may also require a differ-
ent paradigm than the traditional object-centric view. Indeed,
low- (Schyns & Oliva, 1994) and mid-level (Renninger & Malik,
2004) image statistics support sub-100ms scene categoriza-
tion. They are also thought to be computed relatively early
in cortical processing (Okazawa, Tajima, & Komatsu, 2015;
Ziemba, Freeman, Movshon, & Simoncelli, 2016) and perhaps
in the retina (Gollisch & Meister, 2008). Rather than seeing
these as nuisance features to be experimentally controlled, we
seek a more detailed mapping: how do these image features
contribute to perceptual decisions? We see this as one of the
frontiers of cognitive computational neuroscience, where the
time is ripe for integrating theory, physiology, and behavior to
gain a new understanding of scene perception.
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