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Abstract: 
Understanding the information processing roles of 
cortical circuits is an outstanding problem in 
neuroscience and artificial intelligence. The theoretical 
setting of Bayesian inference has been suggested as a 
framework for understanding cortical computation. 
Based on a recently published generative model for 
visual inference (George et al., 2017), we derive a family 
of anatomically instantiated and functional cortical 
circuit models. Requirements for efficient inference and 
generalization guided the representational choices in the 
original computational model. The cortical circuit model 
is derived by systematically comparing the 
computational requirements of this model with known 
anatomical constraints. The derived model suggests 
precise functional roles for the feedforward, feedback 
and lateral connections observed in different laminae 
and columns, and assigns a computational role for the 
path through the thalamus.  
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Introduction 
Understanding information processing in visual cortical 
microcircuits is an unsolved problem in neuroscience. 
One avenue of research treats vision as generative 
model and derives cortical circuits from the inference 
mechanism in this generative model (Lee & Mumford 
2003, George & Hawkins 2009). In our recent 
publication in Science (George et al., 2017), we 
introduced the Recursive Cortical Network (RCN), a 
neuroscience-inspired probabilistic graphical model for 
vision that achieved state of the art results on several 
vision benchmarks with greater data-efficiency 
compared to prevalent deep neural networks. In this 
summary paper1, we propose a biological 
implementation of RCN by combining its computational 
requirements with known anatomical and physiological 
constraints. We call this neural-RCN. 
 
While our model is consistent with the overarching idea 
of Bayesian inference and free energy minimization 
(Friston, 2010), in contrast to prior works that relied on 
                                                
1 This paper is a short summary of a longer version that is in 
preparation. In a companion paper submitted to the same 

simplistic models (Bastos et al., 2012), the inference 
algorithms and representational choices of RCN are 
validated with real-world tasks (George et al., 2017).  
High level Bayesian inference frameworks that do not 
confront the problem of tractability in realistic settings 
run the risk of being overly general (Jones & Love, 
2011), whereas testing on real world settings enable the 
discovery of architectural and algorithmic the details 
that matter. 
 
We focus on three aspects of RCN that were crucial for 
its performance – lateral connections, contour-surface 
interactions, and ‘explaining away’ – and derive the 
corresponding cortical microcircuits. These match 
several known details, and predict functional roles for 
several others.  

Recursive Cortical Network (RCN) 
RCN is a structured probabilistic graphical model 
(PGM) for vision consisting of a contour hierarchy of 
features that interacts with a surface appearance 
canvas (Fig 1A). The contour hierarchy is learned as 
alternating layers of feature detectors, pools and lateral 
connections. (Fig 1B). In Fig 1B, each circular node is a 
binary random variable, the elongated ellipses are 
categorical random variables, and the rectangles are 
factors that encode compatibility. Pooling provides 
invariance to local deformations, similar to the pooling 
in convolutional neural nets. The lateral connections, 
grey square ‘factor nodes’ in Fig 1 B&C, between the 
pools are learned to enforce contour consistency 
between the choices in adjacent pools. Fig 1C shows 
the hierarchical decomposition of a rectangle in terms 
of simple line segments at the bottom to more complex 
corner features at intermediate levels. Fig 1D is the 
graph corresponding to the representation of a “A” from 
a trained RCN.  

conference (Lavin et al), we use RCN to explain several visual 
phenomena. 



  
The graphs corresponding to higher level features will 
share many of their lower level parts as shown in Fig 1B 
(blue and black), so that a hierarchy of objects is  
constructed out of many shared parts. The surface 
CRF, lower level of Fig 1E, encodes constraints 
regarding surface smoothness such that they are 
expected to vary smoothly when not interrupted by a 
contour (nodes in the upper layer), and discontinuously 
otherwise. A hierarchy consisting of convolutionally tiled 
graphs of different objects is a probabilistic model for 
the different objects in a scene. 
 
Parsing is achieved by doing approximate MAP 
inference (inference to best explanation) using a 
scheduled belief propagation (BP) (Pearl, 1988) 
inspired by biology. A fast forward pass, which includes 
short-range lateral propagations, identifies nodes that 
are highly likely given the evidence. The backward pass 
focuses on highly active top-level nodes and includes 
longer range lateral propagations. The forward and 
backward passes assemble an approximate MAP 
solution that produces a complete segmentation of the 
input scene. See (George et al., 2017) for more details. 
 

Mapping of cortical circuits 
Loopy BP computations are not directly represented in 
the PGM in Fig1, but can be understood as sending 
messages back and forth along the edges in the graph. 
Each edge has two messages going in opposite 
directions.  Messages between binary variables is a 
scalar representing the log likelihood ratio of the 
corresponding binary variable being ON, and messages 
between categorical variables are real valued vectors. 
 
In neural-RCN, inference computations corresponding 
to the features, pools and laterals of one level of the 
RCN maps to a specific cortical region. For example, 

Level 1 in Fig 1C would correspond to the primary visual 
cortex V1.  
Cortical column as a binary random variable 

The core of neuro-RCN is viewing a cortical column as 
representing a single binary variable. In this 
interpretation, a cortical column a represents a ‘feature’ 
or a ‘concept’ -- for example, an oriented line segment 
in V1 or the letter ‘B’, in IT. The different laminae in a 
particular column corresponds to the inference 
computations that need occur the determine the 
participation of this feature in different contexts: (1) 
laterally in the context of other features at the same 
level, (2) hierarchically in the context of parent features,  
(3) hierarchically as context for child features, and (4) 
pooling/un-pooling for invariant representations (Fig 2) 

 
Neuronal clones: RCN anticipates that a cortical 
column will contain “clones” of neurons that are nearly 
indistinguishable by their bottom-up input, but distinct 
when considering their lateral or top-down inputs. For 
example, RCN encodes higher-order lateral 
interactions in an efficient manner by having different 
copies of features  for contours with different curvature 
Similar strategy is used for sequence representation 
and for border-ownership representation (George et al., 
2017) 

Layer 2/3 lateral connections 
Lateral factors in RCN encode an association field over 
contours such that lateral message propagation will 
tend to enhance smooth contours. In lateral 
propagation, the likelihood of each feature is calculated 
as a combination of bottom-up inputs from the features, 
and lateral messages from other pools. Layers 2 and 3 
match the anatomical constraints for implementing 
these computations. They receive feed-forward inputs 

Figure 1: RCN probabilistic graphical model. See text for details. 



from the ‘feature detector’ layer-4 neurons (Harris & 
Shepherd, 2015), and send their axons across columns 
covering large distances and make patchy connections 
at their destinations (Binzegger et al., 2004).  
 
A few aspects of the specific circuit (Fig 2B) predicted 
by RCN are noteworthy. Neural-RCN has separate 
neurons (green and cyan) within a column for receiving 
messages from a pool and for sending messages to that 
pool. A third neuron (purple) integrates the different 
inputs. The pooling neuron (yellow) pools the outputs 
from the purple neurons in multiple feature columns, 
and sends its output to the next level of the hierarchy. 
Having different neuron copies allows for segregation of 
incoming and outgoing messages which is known to 
improve the accuracy of BP. However, a strict 
separation might not be required for reasonable 
performance.  
 
The factor between the pools in RCN is a matrix that 
encodes the compatibility between the features in the 
different pools. In neural-RCN, this factor is 
implemented in the dendritic trees of the neurons 
involved. RCN stipulates the specific computations that 
need to happen in the dendrites of the circuit in Fig 2B. 
For example, the green neuron that is receiving lateral 
axons from neighboring pool, will first do a max-like 
operation over those activations and then add it (log 
domain) with the bottom up input it receives from layer 
4 neurons. 
 
Feedback computations are similar, and RCN predicts 
that a separate population of neurons in layer 2/3 or 
layer 5 perform this computation for the feedback pass. 
While the lateral connections are the same as in Figure 
3, neurons in this population will have apical dendrites 
that extend to layer 1 to receive feedback from higher 
levels. Top-down messages act as a ‘priors’ on the 
pools at the lower level, and determine which pools in 

the children are ON/OFF. The specific feature column 
that is to be turned ON within a pool is then determined 
as the one most compatible with its neighboring pools, 
based on lateral message passing.  
  
Inter-blob and blob columns in V1 
The use of a factorized contour-surface representation 
enables RCN to generalize to novel combinations of 
shapes and appearances. A similar segregation exists 
in V1 in terms of inter-blobs that represent oriented line 
segments, and the blobs that represent surface 
features like colors or textures (Sincich & Horton, 2005). 
RCN makes precise predictions about their interactions, 
based on the PGM in Fig 1E: The interaction between 
blobs (surface features) are gated by contour neurons  
in the inter-blob columns (potentially in layer 4). In 
Figure 3, the green-to-green lateral connections are the 
ones that represent surface continuity, and the red-to 
green lateral connections are the ones that represent a 
surface discontinuity. The specific prediction from RCN 
is that the contour neurons, using dendrite level 
inhibition and disinhibition (Stemmler et al., 1995), will 
select the appropriate lateral connections, as part of 
inference.  
 

 
Figure 3: Contour-surface interaction 

Figure 2 A. Computational roles of different laminae in neural-RCN. B. Lateral connections in neural-RCN 



 
Explaining away and top-down attention via 
the thalamus 

 
Figure 4: Thalamus and explaining away 

An integrated functional role of the thalamic pathway 
(Rikhye et al., 2018) is an enduring mystery in 
neuroscience, and RCN makes predictions about this. 
Anatomical data show two feed-forward circuits: a direct 
cortico-cortical connection from from layer 2/3, and an 
indirect cortico-thalamo-cortical connection from layer 
5. The thalamus also receives feedback connections 
from the higher level. The feedback projections from L6 
also project back to L4 via an inhibitory circuit as shown 
in Fig 4A. 

To understand RCN mapping, consider the PGM 
fragment in Figure 4B where the nodes a,b,c 
correspond to features at a higher level (V2) and nodes 
e,f,g, correspond to pools at a lower level (V1)(or it 
could represent the top-down connections from V1 to 
LGN.) Explaining away computations, in which the 
feed-forward messages from a child are affected by 
feed-back-messages that it has received, happen in 
child nodes that have more than one parent. This basic 
circuit can act as a template for understanding the 
pathway through the thalamus. 

In neural-RCN, the direct cortical-cortical pathway 
provides fast feed-forward messages without explaining 
away. In the PGM of Figure 4B, The first feed-forward 
pass will assign equal strength the different competing 
hypotheses that have the same top-down prior. The 
pathway that goes through the thalamus includes 
explaining away and attention control. Maintaining 
these two pathways is advantageous because a fast 
feedforward pathway can alert the animal to novel 
situations that might be out of context. The inhibitory 
projection from L6 to L4 is an approximate version of 
this explaining away circuit as well, which provides 
faster but approximate explaining away mechanism. 

Figure 4C shows the detailed circuitry within the 
thalamus for explaining away computations.  
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