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Abstract
Music genre classification is one example of content-
based analysis of music signals. Traditionally, human-
engineered features were used to automatize this task
and 61% accuracy has been achieved in the 10-genre
classification. Here, we propose a method that achieves
human-level accuracy (70%) in the same classification
task. The method is inspired by knowledge of human per-
ception study in music genre classification and the neu-
rophysiology of the auditory system. It works by training
a simple convolutional neural network (CNN) to classify
short segments of music waveforms. During prediction,
the genre of an unknown music is determined as the ma-
jority vote of all classified segments from a music wave-
form. The filters learned in the CNN qualitatively resemble
the spectro-temporal receptive fields (STRF) in the audi-
tory system and potentially provide insights about how
human auditory system classifies music genre.
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Introductions
With the rapid development of digital technology, the amount
of digital music content increases dramatically everyday. To
give better music recommendations for the users, it’s essential
to have an algorithm that could automatically characterize the
music. This process is called Musical Information Retrieval
(MIR) and one specific example is music genre classification.

However, music genre classification is a very difficult prob-
lem because the boundaries between different genres could
be fuzzy in nature. For example, testing with a 10-way forced
choices task, college students could achieve 70% classifica-
tion accuracy after hearing 3-seconds segment of the mu-
sic and the accuracy does not improve with longer segment.
(Tzanetakis & Cook, 2002). Also, the number of labeled data
often is much smaller than the dimension of the data. For ex-
ample, GTZAN dataset 1 used in the current work contains
only 1000 audio tracks, but each audio track is 30s long with
a sampling rate 22,050 Hz.

Traditionally, using human-engineered features like MFCC
(Mel-frequency cepstral coefficients), texture, beat and so on,
61% accuracy has been achieved in the 10-genre classifica-
tion task (Tzanetakis & Cook, 2002). More recently, using
PCA-whitened spectrogram as input, convolutional deep be-
lief network has achieved 70% accuracy in a 5-genre classifi-

1Available at: http://marsyasweb.appspot.com/download/
data sets/

cation task. These results are reasonable but still not as good
as humans, suggesting there’s still space to improve.

Psychophysics and physiology study show that human au-
ditory system works in a hierarchical way (Schnupp, Nelken, &
King, 2011). First, the ear decomposes the continuous sound
waveform into different frequencies with higher precision on
low frequencies. Then, neurons from lower to higher auditory
structures gradually extract more complex acoustic features
with more complex spectro-temporal receptive field (STRF)
(Theunissen & Elie, 2014). The features used by human audi-
tory system for music genre classification may rely on STRFs
but at different time scales. By having the spectrogram as
input and the corresponding genre as label, CNN will learn
filters that extract features in the frequency and time domain.
These learned filters can be seen as STRFs for music classi-
fication. Because music signal often is high-dimension in the
time domain, having a CNN that fits the complete spectrogram
of the music signal is not feasible. To solve this problem, we
split the spectrogram of the music signal into consecutive 3-
second segments, make predictions for each segment, and fi-
nally combine the predictions from all segments using the ma-
jority vote. The main rational for this method is that humans’
classification accuracy plateaus at 3 seconds and good re-
sults were obtained using 3-second segments to train convo-
lutional deep belief network (Tzanetakis & Cook, 2002) (Lee,
Pham, Largman, & Ng, 2009). It also intuitively makes sense
because different parts of the same music probably should
belong to the same genre.

To further reduce the dimension on the spectrogram,
we used mel-spectrogram as the input to the CNN. Mel-
spectrogram approximates how human auditory system works
and can be seen as the spectrogram smoothed in the fre-
quency domain, with high precision in the low frequencies and
low precision in the high frequencies (O’shaughnessy, 1987)
(Picone, 1993).

Data Processing & Models

Data pre-processing

Each music signal is first converted from waveform into mel-
spectrogram zi using Librosa library with 23ms time window
and 50% overlap (Figure 1). Then, the mel-spectrogram is
log transformed to bring values at different mel-scale to the
same range ( f (zi) = ln(zi + 1)). Because mel-spectrogram
is a biological-inspired representation (Picone, 1993), it has a
simpler interpretation than the PCA-whitening method used in
(Lee et al., 2009).



Figure 1: Convert waveform into mel-spectrogram and an ex-
ample 3-second segment. Mel-spectrogram mimics how hu-
man ear works, with high precision in low frequency band
and low precision in high frequency band. Note, the mel-
spectrogram shown in the figures is already log transformed.

Network Architecture

1. Input layer: 64 * 256 neurons, corresponds to 64 mel scales
and 256 time windows(23ms, 50% overlap).

2. Convolution layer: 64 different 3 * 3 filters with a stride of 1.

3. Max pooling layer: 2 * 4.

4. Convolution layer: 64 different 3 * 5 filters with a stride of 1.

5. Max pooling layer: 2 * 4.

6. Fully connected layer: 32 neurons that are fully connected
to the neurons in the previous layer.

7. Output layer: 10 neurons that are fully connected to neu-
rons in the previous layer.

For 2D layers/filters, the first dimension corresponds to the
mel-scale and the second dimension corresponds to the time.
All hidden layers use RELU activation functions, the output
layer use softmax function, and the loss is calculated using
cross-entropy function. Dropout and L2 regularization were
used to prevent extreme weights. The model is implemented
using Keras (2.0.1) with tensorflow as backend and trained on
a single GTX-1070 using stochastic gradient descent.

Training & Prediction

1000 music tracks (converted into mel-spectrogram) are split
into 50% training, 20% validation, and 30% testing. The train-
ing procedure is as following:

1. Select a subset of tracks from the training set.

2. Randomly sample a starting point and take the 3-second
continuous segments from all selected tracks.

3. Calculate the gradients using back-propagation algorithm
using the segments as input and the labels of the original
music as target genres.

4. Update the weights using the gradients.

Figure 2: Confusion matrix of the CNN classification on testing
set.

5. Repeat the procedure until classification accuracy on the
cross-validation data set doesn’t improve anymore.

During testing, all music (mel-spectrogram) are split into
consecutive 3-second segments with 50% overlap. Then, for
each segment, the trained neural network predicts the proba-
bilities of each genre. The predicted genre for each music is
the genre with most votes.

Calculate the filters learned by the CNN
After training, all musics are split into 3-second segments with
10% overlap. All the segments are then fed into the trained
CNN and intermediate outputs are calculated and stored.
Then, we estimated the learned filters using the following
method:

1. Identify the range of input neurons (specific section of the
input mel-spectrogram) that could activate the target neu-
ron at a specific layer. E.g., c(l)i, j indicates the neuron at

location (i, j) from the lth layer.

2. Perform Lasso regression with the specific section of the
mel-spectrogram (reshaped as a vector) as the regressors
and the corresponding activations of the neuron c(l)i, j as the
target values.

3. The fitted Lasso coefficients were reshaped to estimate the
learned filters.

Results
The current method achieves human-level (70%) accuracy in
the 10-genre classification task (Figure 2). It’s 10% higher
than in (Tzanetakis & Cook, 2002) and classifies 5 more dif-
ferent genres than (Lee et al., 2009) with similar accuracy.

Classification accuracies varies by different genres.
Confusion matrix (Figure 2) shows that the classification accu-
racy varies a lot across different genres. Especially, the accu-
racies for country and rock genre are not only lower than the
current average but also lower than those from (Tzanetakis
& Cook, 2002). Because some important human-engineered
features used in (Tzanetakis & Cook, 2002) are the long-term



Figure 3: Filters learned by the CNN are similar to the STRF
from physiological experiments. Mel scale corresponds to fre-
quency and relative time corresponds to latency in figure 4.
Note that 1 unit of time is 60ms, which is different from figure
4.

feature like beat and rhythm, this suggests country and rock
music may have characteristic features (e.g., beat) that require
longer time (> 3 seconds) to capture and 3s segments used
in our CNN are not long enough. One future direction is to
explore how to use CNN to extract long-term features for clas-
sification and one possibility is to use another down-sampled
mel-spectrogram of the whole audio as input.

CNN learns filters like spectro-temporal receptive
field.

Figure 2 shows some filters learned by the CNN’s 2nd max
pooling layer and they are qualitatively similar to the STRF ob-
tained from physiological experiments (Figure 4), even though
at different time scales. To visualize how these filters help
classify the audios, we feed all the 3s segments from the test-
ing set into the CNN and calculated the activations of the last
hidden layer. After this non-linear transformation, most testing
data points become linearly separable (Figure 5). In contrast,
the testing data points are much less separable when raw mel-
spectrogram is used.

These results together show that human auditory system
may use filters like those learned in the CNN to classify mu-
sic genre. The STRF-like filters transform the original mel-
spectrogram into a representation where the data is linearly
separable. But to test this hypothesis, physiological experi-
ments are needed.

Discussion

By combining the knowledge from human psychophysics
study and neurophysiology, we used a simple CNN which suc-
cessfully classified the audio waveforms into different genres
with human-level accuracy. It may not be the methods that
give the highest classification accuracy ((Van Den Oord et al.,
2016); (Stokowiec, 2016)), but it is simple and potentially pro-
vides insights about how humans perform music genre classi-
fication. The same technique may be used to solve problems
that share similar characteristics, for example, music tagging
and artist identification using raw audio waveform.

Figure 4: STRF obtained from physiological experiments.
From left to right are the STRFs obtained from lower to higher
auditory structures. Adapted from (Theunissen & Elie, 2014)
with permission. Note that 1 unit of time is 1ms.

Figure 5: Comparison between the separability of the raw rep-
resentation and last layer representation of the CNN of the
testing data. The axes are the first three components when
data is projected onto the directions obtained from linear dis-
criminant analysis (LDA). using training data.
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