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Abstract: 

The connectivity and information pathways of visual 
cortex are well studied, as are observed physiological 
phenomena, yet a cohesive model for explaining visual 
cortex processes remains an open problem. For a 
comprehensive understanding, we need to build models 
of the visual cortex that are capable of robust real-world 
performance, while also being able to explain 
psychophysical and physiological observations. To this 
end, we demonstrate how the Recursive Cortical 
Network (George et al., 2017) can be used as a 
computational model to reproduce and explain 
subjective contours, neon color spreading, occlusion vs. 
deletion, and the border-ownership competition 
phenomena observed in the visual cortex. 
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Introduction 
For a comprehensive understanding of visual cortex, 
we need to build models that are capable of robust real-
world performance, while also being able to explain 
psychophysical and physiological observations. One 
avenue of research considers the tasks of recognition, 
segmentation, reasoning etc. as queries on a 
generative model (Lee & Mumford, 2003). Many visual 
illusions can also be understood as optimal Bayesian 
inference in a generative model, and they often provide 
insights into to the mechanisms underlying visual 
perception. In a recent publication (George et al., 2017), 
we introduced the Recursive Cortical Network (RCN), a 
generative model for vision, and demonstrated its real-
world performance. Here we show that RCN can 
reproduce and explain well-known psychophysics 
experiments and physiological observations: (1) 
subjective contour effects (Kanizsa, 1976), (2) and 
neon color spreading, (3) border-ownership response, 
and (4) occlusion versus deletion effect. All these 

                                                
1 This paper is a short summary of a larger manuscript under 
preparation. A companion summary paper submitted to this 
conference describes the neurobiological mapping of RCN. 

phenomena are explained as the byproduct of doing 
inference in the model that was constructed and learned 
for parsing a visual scene1.  
 

Recursive Cortical Network (RCN) 

RCN is a structured probabilistic graphical model 
(PGM) for vision consisting of a contour hierarchy of 
features that interacts with an appearance canvas (Fig 
1A). The contour hierarchy is learned as alternating 
layers of feature detectors, pools and lateral 
connections (Fig 1B). In Figure 1B, each filled circular 
node is a binary random variable, the open circular 
nodes are categorical random variables, and the 
rectangles are factors that encode compatibility. 
Pooling provides invariance to local deformations, 
similar to the pooling in convolutional neural nets. The 
lateral connections, grey square ‘factor nodes’ in Fig 1 
B and C, between the pools are learned to enforce 
contour consistency between the choices in adjacent 
pools. Figure 1C shows the hierarchical decomposition 
of a rectangle in terms of simple line segments at the 
bottom to more complex features in the higher levels, 
and Figure 1D shows the details of the interactions 
between contours and surfaces. See George et al., 
(2017) for details. 
 
Parsing a scene is achieved by doing approximate MAP 
inference (inference to best explanation) using 
scheduled max-prop belief propagation (Pearl, 1988). 
The message passing schedule, which was inspired by 
biology, is as follows. A fast forward pass, which 
includes short-range lateral propagations, identifies 
nodes that are highly likely given the evidence. The 
backward pass focuses on highly active top-level nodes 
and includes longer range lateral propagations. The 
propagations are used to assemble an approximate 



 

 

MAP solution that produces a complete segmentation 
of the input scene. 

 

 

 

Figure 1: RCN generative model. See text for details. 
 

Results 
The visual phenomena that we explain share some 
commonalities. They require the interoperation of feed-
forward, feedback and lateral connections. Three of 
them involve the representation of contours and 
surfaces. All of them can be understood as the result of 
approximate optimal inference in RCN. 

Subjective Contours 

In the subjective contours illusion, people perceive an 
illusory line that is not supported by local evidence. In 
Figure 2 top left, people perceive a faint contour of a 
triangle in the blank space between the circles even 
though there is no local evidence for a border. 
Physiological results report evidence for neurons in V1 
responding to the illusory contour, albeit with a delay 
compared to the neurons responding to real contours 
(Lee & Mumford, 2003). Figure 2 columns 1 & 3 show a 
diverse of set of images where illusory contours are 
perceived. In columns 2 & 4, we show how an RCN that 
is trained to recognize regular shapes ‘hallucinates’ 
illusory contours in these visual stimuli. What is shown 
in these images is the ‘inference to best explanation’ 
(MAP inference) solution at the lowest level of the 
network, obtained as a result of message passing as 
described earlier. The yellow portions in these images 
denote the bottom-up evidence, and the blue stars are 
the ‘backtraces’ that is part of the global MAP solution 
found by the network. The backtrace indicates that the 
network expects to see contours in the blank space to 
be ON as part of the global solution.  
 

 

 
Why does RCN produce these hallucinations as a result 
of inference, despite the lack of local evidence? The 
reason is that the local evidence in the rest of the image 
is sufficient to support the global percept of the object, 
according to the model. Since MAP inference finds the 
configuration that best explains the evidence in the 
image, it will turn ON all the features that are part of the 
global percept.  

The temporal dynamics of neuronal responses to 
subjective contours (Lee & Mumford, 2003) can be 
readily understood from the schedule of message 
propagation. During the forward pass, the features have 
only local evidence, and hence the neurons in blank 
spaces do not respond. Once forward pass identifies a 
potential global percept, that information flows down in 
the top-down messages to affect the beliefs in lower 
level nodes to turn ON some features that were 
previously OFF.  

Border Ownership Responses 
Boundaries of occluding objects are perceived as 
belonging to them, a property known as border 
ownership (von der Heydt, 2011). Several neurons in 
V1 and V2 are known to be sensitive to their border 
ownership. These cells prefer a given figure to be on 
one side of a border or the other, yet it is not possible to 
determine from local cues within a cell's classical 
receptive field whether a given contour belongs to a 
surface or not (Tyler 2011). In particular, in the earlier 
phases of the response to a stimulus, both these copies 
fire equally, and in the later phase of the response only 
the neuron with the correct surface selectivity maintain 
the response (von der Heydt, 2011).  

Figure 2: Subjective contours. See text for details. 



 

 

 

 
Consistent with findings presented in (von der Heydt, 
2011), RCN model has two copies of every contour 
neuron, one representing each side of the border 
ownership. However, it is the precise nature of their 
interaction in the PGM that determines how it arrives at 
the solution. Figure 3A shows the PGM fragment of 
RCN corresponding to this interaction. The feature 
copies with identical contours, but different side-of-
surface preferences interact with the contour-node with 
no preference (‘unselective’) in a noisy-OR ‘V’ structure. 
The unselective node is directly connected to the 
rendered image. On the first forward pass through the 
V-structure, bottom up evidence flows equally to both 
parents due to lack of prior preference for either of 
them. Feed forward propagations result in a global 
percept at the top level that is consistent with only one 
of the parents. The backward messages then convey 
these preferences. Since the goal of inference is to 
‘explain’ the evidence, one of the parents turning ON 
‘explains-away’ the need for the other parent to turn ON. 
Figure 3B shows the log-likelihoods of the border 
ownership nodes as a function of the number of 
message passing iterations. This reproduces and 
explains the experimentally observed effect.  

Neon-color Spreading 
Certain stimuli, like that in Figure 3 (left), elicit 
perception of an illusory surface with an illusory color in 
humans, an effect known as neon-color spreading 
(Bressan et al., 1997). The suggested mechanism 
behind these effects is the interplay between boundary 
completion and surface filling-in in visual cortex 
(Grossberg & Yazdanbakhsh, 2005). Notably, the filling 
in of the illusory surface respects the boundaries of the 
illusory contours.  
 
 

 
The neon color spreading effect is a natural byproduct 
of the dynamics of MAP inference in RCN. To 
understand this, consider the PGM fragments shown in 
Figures 1A and 1D. The surface modeled as a 
conditional random field (CRF) encourages continuity 
between adjacent surface nodes unless the intervening 
contour node is turned ON. As described in George et 
al., (2017), a forward pass through this model produces 
approximate edge and surface responses. The 
backward pass, which is based on selecting the most 
active hypothesis at the top level of the contour 
hierarchy, will then enforce the corresponding contour 
discontinuities on the surface CRF.  The stimulus 
shown in Fig 4 (left) has sufficient local edge evidence 
to support a circle as the top level hypothesis in the 
contour hierarchy of RCN – this part of the inference is 
identical to the case of subjective contours described 
earlier. The top-down partial MAP configuration for 
contours, the circle, then influences the propagation in 
the CRF. The discontinuity imposed by the top-down 
contours will then propagate in the CRF with further 
message passing to create the fill-in effect.  

Occlusion vs. Deletion 
Psychophysics experiments show that humans are 
much better at detecting objects under occlusion than 
the same objects with occluded regions deleted 
(keeping the same visible portion) (Johnson & 
Olshausen, 2005). In George et al., (2017), we 
demonstrated that reasoning about occlusions leads to 
significantly higher recognition rates in RCN.   
 

Figure 4: Border ownership experiment with RCN. (A) 
PGM schematic, B) Evolution of activation of two 
contour selective cell copies with identical RFs but 
opposing border ownership preferences. 

Figure 3: Neon-color spreading experiment with RCN 
demonstrating the neural filling-in mechanism. Given 
the input stimulus (Bressan et al., 1997)(left), surface-
information is sequentially propagated in the model’s 
V1 (right, clockwise from top-left). 



 

 

 
 
Figure 5: Detection under occlusion versus deletion in 
RCN. Similar to human psychophysics findings, RCN 
detection score (top-right corners), reflecting the 
confidence, is highest when the object is fully visible 
(left), followed by when it is occluded (middle), 
 
The reason behind occlusion-vs-deletion is easy to 
understand in the RCN generative model.  Deletion of 
the parts of an object is absence of evidence for those 
parts. When those same parts are missing due to 
occlusion, the model can explain away the absence of 
evidence as occlusion. Mechanistically, the portions 
that are deleted will contribute negative evidence to the 
overall hypothesis if there is no occlusion to explain 
their absence. Explaining away during occlusion 
reasoning will convert those negative evidences to 
‘uncertain evidence’ (log-likelihood = 0). Figure 5 shows 
the log likelihood scores obtained for the ‘square’ 
hypothesis when the missing evidence is treated as 
occlusion (middle column) vs deletion (right column), in 
comparison to an intact square (left column).  

Discussion 
We described how the dynamics of approximate 
Bayesian inference using loopy belief propagation in 
RCN could explain several well-known psychophysical 
and physiological results.  In contrast to models that are 
constructed specifically to explain isolated phenomena, 
all these observations were explained as the natural 
byproduct of doing ‘inference to best explanation’ in a 
model that was learned for parsing a visual scene.  
Neuro and cognitive science research guided the 
representational choices and inference algorithms in 
RCN and those were crucial for it to achieve state of the 
art performance on several real world benchmarks with 
very little training data. Our hope is that RCN can be 
also be used as tool in neuroscience and cognitive 
science experiments to further understand the 
computations in visual cortical circuits.  
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