
Combining heuristics with counterfactual play in reinforcement learning.

Erik J Peterson (erik.exists@gmail.com)
Department of Psychology, Carnegie Mellon University,

5000 Forbes Ave, Pittsburgh, PA 15213

Necati Alp Myesser (nmuyesse@andrew.cmu.edu)
Department of Mathematical Sciences, Carnegie Mellon University,

5000 Forbes Ave, Pittsburgh, PA 15213

Kyle Dunovan (kdunovan@andrew.cmu.edu)
Department of Psychology, Carnegie Mellon University,

5000 Forbes Ave, Pittsburgh, PA 15213

Timothy Verstynen (timothyv@andrew.cmu.edu)
Department of Psychology, Carnegie Mellon University,

5000 Forbes Ave, Pittsburgh, PA 15213

Abstract

Deep reinforcement learning can sometimes match and
exceed human performance, but if even minor changes
are introduced artificial networks can’t adapt what they’ve
learned to new situations. Two reasons why people are
so eminently adaptable is their use of heuristics, and
their ability to imagine new environments and learn from
them, a kind of counterfactual reasoning. We’ve de-
veloped a model of hierarchical reinforcement learning
which includes both these elements. Using a board game
with a known optimal strategy–Wythoffs game–we show
that this “stumbler-strategist” network promotes gener-
alizability and robustness to new environments and rule
changes, while also improving post-training interpretabil-
ity of learning outcomes.

Keywords: hierarchical reinforcement learning; transfer learn-
ing; strategy

Deep reinforcement learning can rival human performance
on games of strategy like chess and Go (Silver et al., 2016,
2017), and less structured games like classic Atari video
games (Mnih et al., 2015). However unlike humans artificial
networks are unable to transfer their performance to new sit-
uations, even ones that include trivial changes (Lake, Ullman,
Tenenbaum, & Gershman, 2017). Part of the human capac-
ity for generalization may come from our ability to imagine
new environments and learn from them, a kind of counter-
factual reasoning (Pearl, 2017). Our success also stems from
our ability to develop and exploit heuristics (Lake et al., 2017;
Toyama, Katahira, & Ohira, 2017). To try and improve trans-
fer learning in artificial networks, we combined these two ele-
ments in a novel variation of hierarchical reinforcement learn-
ing, which we term the stumbler-strategist network architec-
ture.

Stumbler-strategist networks
We introduce stumbler-strategist networks (Figure 1) a vari-
ation on the DYNA-Q models (Sutton, 1990). Stumblers are
model-free reinforcement learning agents that observe and
act in the environment. Like all model-free systems they can
only discover the value of specific input-output associations,
without any appreciation for the organizing features of the
game that govern these associations.

Strategists are model-based agents that can only observe
what the stumblers learn, sampling and aggregating informa-
tion about many stumblers’ actions. Strategists don’t act di-
rectly but can, when confidence is high, bias stumbler’s ac-
tions. We imagine that like the prefrontal cortex, strategists
are bound to an abstract realm–neither directly observing or
acting on the world.

Our key innovation is in how strategists use information:
they simulate counterfactual play in new and more challeng-
ing environments. That is, to learn to transfer knowledge they
“imagine” and play new games based on their observation of
stumblers activity. The strategist layer can succeed in these
new, harder, environments because it is imbued with a loose
heuristic strategy (described below).

Wythoff’s game
To understand our strategist’s heuristic, we must first describe
the environment in which it plays.

To isolate strategy learning and transfer, our agents play an
(impartial) board game called Wythoff’s game. The game is
played on a two dimensional grid in which players alternate
turns to move an object that is initially on the bottom-right cor-
ner towards the top-left corner. The player who gets to place
the object in the top-left corner terminates, and thereby wins
the game. Every turn, the object can be moved horizontally,
vertically, or diagonally towards the top-left corner.

Despite their simplicity “gridworld” environments (like that
in Wythoff’s game) can provide a challenging but controllable
test-bed for transfer learning. Indeed, in these simple environ-
ments two state-of-the-art deep reinforcement learning net-

Figure 1: Diagram of the stumbler-strategist architecture.
Stumblers, implemented as model-free agents driven by the
Q-learning rule and a softmax action-selection policy (= 0.7
for all models), interact with the game environment, generat-
ing Q(s,a) training samples for the strategist. The strategist
uses the current sample, as well as past experiences from a
memory replay loop, to simulate counterfactual play on a new
(larger) game board.

works could not adapt to subtle differences in the training and
testing environments (Leike et al., 2017).

The difference between an impartial game, like Wythoff’s,
and a strategy game like Go, is that an impartial game has
a single ground truth solution. Every position in an impartial
game is either hot, meaning that there exists a winning strat-
egy for the player about to make a move, or cold, meaning
that under optimal play, the player about to make a move will
always lose. The distribution of hot and cold positions across
the state space in an impartial game usually comes with in-
herent mathematical structure.

Figure 2: Cold positions in Wythoff’s game are distributed
along two symmetrical lines. Arrows show how from every
other position (hot) there exists a move to a cold position.
There does not exist any move from a cold position to another
cold position. Figure used with permission from Zachary Abel
(Abel, 2014)

The heuristic

The heuristic used by the strategist is that “cold states are
symmetric about the diagonal of the game board”. To imple-
ment this, first maxQ(s,a) values are classified for each state s
as cold if 0≤maxQ(s,a)≤ ε and hot if 1−ε≤maxQ(s,a)≤
1, where 0< ε< 1. Second, random samples of this hot/cold
dataset are then fed into a separate neural network, but all
cold states always have their complement included in the
training set. That is, if state (i, j) is classified as cold, state
(j, i) is also included in the training set even if it was classified
as hot.

Results
The strategist displayed great efficacy in producing generaliz-
able models for Wythoff’s game. Figure shows how the two
components of the network learned the value of board posi-
tions at different stages of learning. Models that are devel-
oped in the earlier stages of training remain mostly irrelevant
to generalization; however, models that meaningfully gener-
alize, although with low accuracy, begin to emerge soon after
initial training. Such models are crucial for the learning pro-
cess because they influence the way the stumbler chooses to
explore different action spaces. Without such guidance, the
stumbler explores actions without any overall purpose or in-
sight. With the guidance from the strategist, the stumbler ex-
plores actions that would either contradict or confirm an overall
hypothesis about the nature of the learning environment.

Figure 3: Learning in three stages of training on Wythoff’s
game. The early models (Discovery) will be largely unsuc-
cessful, while certain inaccurate generalizations (Experimen-
tation) will supply reasonable strategies to the stumbler, al-
lowing the provision of useful datasets into the network that
translate into accurate and general models (Convergence). In
this example the stumbler trained on a 14 by 14 board for 2000
game-plays, across each strategist time-step. The strategist
learned to play on a 50 by 50 game board.

We compared the performance of the stumbler-strategist
network to two types of stumblers. Stumbler 1 used lookup
table approach to Q-learning (described in Alg. 1). Stumbler
2 used a Deep Q Network-style (DQN) design (et al Minh,
2015), which allowed us to asses if an over-parameterized
model could capture similar strategic information. Figure 4
shows the accuracy of all three networks during learning. The
stumbler-strategist network agent improves performance in
discrete jumps as better models replace worse ones over time.

Notably here, in this simple environment the Deep Q Network
doesn’t appear to learn at all.

Figure 4: The stumbler-strategist outperforms both stumblers
on identical training periods. The strategist trained on a 50 by
50 board on with 5000 counterfactual gameplay simulations
per time-step. Stumblers trained on a 12 by 12 board with
1000 simulations each. Change in network architecture, cost
functions, or layer count did not have a noticeable effect on
the learning outcomes of all networks

To see whether the stumbler-strategist network’s general-
izability was maintained with a larger board size, we trained
the model on a 12 by 12 stumbler board, and on strategist
boards ranging from 12 to 300. Though performance declines
as board size rises, in the largest size (a 300 by 300 board)
the model achieved 70% accuracy (Figure 5).

Figure 5: Performance of a stumbler-strategist network as the
strategist’s board dimensionality rises, but the stumbler board
stays the same. The stumbler in this model was trained on a
12 by 12 board. The strategist trained using 2000 counterfac-
tual gameplay simulations.

Discussion
Our key innovation is the introduction of a “strategist” layer,
which simulates counterfactual play in new and more chal-
lenging environments. The strategist layer however only suc-
ceeds in these new, harder, environments because it is im-

bued with a loose heuristic: important moves have a mathe-
matical symmetry on the game board.

We studied our stumbler-strategist in a toy “gridworld“ envi-
ronment, with known optimal play (i.e. we studied Wythoff’s
game). Moving from simple games such as this to open-
ended strategy games like Go and to complex visual environ-
ments like classic Atari games will require at least two further
innovations.

First, gridworld games share common coordinates. It is
therefore simple to move from smaller boards to larger and
more challenging boards by just mapping between common
coordinates. Using a stumbler-strategist network in visu-
ally complex environments, like classic Atari, therefore re-
quires solving this projection problem–which may be nontriv-
ial. There is room for optimism though, as the response in
higher-level layers in DQN networks is related to the percep-
tual similarity of the input images, suggesting strategists could
observe not only values, but also critical perceptual relation-
ships by only studying stumblers’ responses to the world.

Second, we studied a single strategic heuristic (spatial sym-
metry). It is not reasonable to expect this heuristic to apply in
all but a few select instances. However there exists a sub-
stantial literature in game theory representing a large pool of
possible heuristics and strategies. While these will certainly
not describe optimal performance in all situations, there are
perhaps consistent moments to be found in complex games
where simple strategies, and matched counterfactual simu-
lations, will allow for information to be efficiently transferred
between environments.

Methods
Stumbler learning
Stumbler learning is governed by Q-Learning, extended to al-
low for “top-down” strategist feedback and interactive game
play.

Algorithm 1 Learning algorithm used by stumbler
1: procedure STUMBLE(Q,Strategist)
2: α← learning rate
3: β← exploration-exploitation
4: L← confidence in Strategist
5: ζ← confidence convergence rate to L
6: G← Initialize Wythoff’s game
7: while G continues do
8: p← confidence in Strategist given L, ζ

9: if x∼ N(0,1)< p then
10: action← greedy move per Strategist
11: else . do Q learn
12: action← softmax(Q(s,a),))
13: do action on G
14: if G ends then
15: reward← 1 . Winning move
16: else . Opponent plays
17: do greedy action using Q on G
18: if G ends then
19: reward←−1 . Opponent wins
20: else
21: reward← 0
22: Q′← max Q-value from new state s′

23: Q(s,a)← α(reward +Q′−Q(s,a))
24: return final Q

Strategist training
Strategists are perceptrons, trained on input coordinates (i, j)
and output values derived using the heuristic described above.
The Memory is replay module which holds the last 2000 Q val-
ues from prior stumbler trials. Strategists were trained using
batches x of 100 randomly sampled events from memory.

Algorithm 2 Learning algorithm used by the Strategist
1: procedure STRATEGIST(Q)
2: (i, j),V ← Heuristic(Q)
3: Strategist← initialized neural network
4: backpropagate Strategist with using cross entropy

loss
5: return Strategist

References
Abel, Z. (2014). Putting the why in wythoff.
http://blog.zacharyabel.com/2012/06/putting-the-why-in-wythoff/.

et al Minh, V. (2015). Human-level control through deep re-
inforcement learning. Nature, 518, 529–533. Retrieved

from http://dx.doi.org/10.1038/nature14236 doi:
10.1038/nature14236

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman,
S. J. (2017). Building machines that learn and think like
people. Behavioral and Brain Sciences, 40.

Leike, J., Martic, M., Krakovna, V., Ortega, P. A., Everitt, T., &
Lefrancq, A. (2017). Ai safety gridworlds. arXiv .

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., . . . Ostrovski, G. (2015). Human-level
control through deep reinforcement learning. Nature, 518,
529-533.

Pearl, J. (2017). Theoretical Impediments to Machine Learn-
ing With Seven Sparks from the Causal Revolution Scien-
tific Background. (September), 1–8.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Driessche,
L. S. G. V. D., Schrittwieser, J., . . . Lanctot, M. (2016).
Mastering the game of go with deep neural networks and
tree search. Nature, 529(7587), 484-489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I.,
Lai, M., Guez, A., . . . Hassabis, D. (2017). Mas-
tering Chess and Shogi by Self-Play with a Gen-
eral Reinforcement Learning Algorithm. , 1–19. Re-
trieved from http://arxiv.org/abs/1712.01815 doi:
10.1002/acn3.501

Sutton, R. S. (1990). Integrated Architectures for Learn-
ing, Planning, and Reacting Based on Approximating Dy-
namic Programming. Machine Learning Proceedings 1990,
02254(1987), 216–224. doi: 10.1016/B978-1-55860-141-
3.50030-4

Toyama, A., Katahira, K., & Ohira, H. (2017). A simple compu-
tational algorithm of model-based choice preference. Cog-
nitive, Affective, & Behavioral Neuroscience, 1–20.

		2018-08-20T14:49:50-0500
	Preflight Ticket Signature

