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Abstract
To distinguish between vocal elements in communica-
tion, both songbirds and humans rely on categorical
perception (CP) of smoothly varying acoustic spaces.
Boundaries in CP are often not fixed, and can be bi-
ased, in both human speech and birdsong, by context.
How contexutal information biases CP is not well under-
stood. Here, we manipulate the information contained in
auditory contextual cues to control CP of natural stimuli,
using a 2-Alternative Choice (2AC) behavioral paradigm.
We show that contextual information can bias CP of a
smoothly varying acoustic stimuli, indicating that prob-
abilistic inference contributes to context dependant per-
ception. We follow this task with acute extracellular
multichannel recordings on the secondary auditory nu-
clei caudal mesopallium (CM) and caudo-medial nidopal-
lium (NCM) in the trained birds, investigating CP and
contextual-related shifts in neural responses.
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Introduction
Categorical perception (CP), the grouping of smoothly vary-
ing stimuli into discrete classes, plays an important role in or-
ganizing complex experiences into a shared representational
space. The capacity to categorically represent stimuli allows
for the abstraction of individual instances of a class to other
instances. For example in speech each time we hear a novel
exemplar of the word ’bat’ we can draw upon our prior ex-
periences of the word to make inferences about the refer-
ent, despite the variability in the acoustic signal underlying the
phoneme /b/ between each utterance.

CP has been observed across sensory modalities (Etcoff &
Magee, 1992; Eimas, Siqueland, Jusczyk, & Vigorito, 1971),
and in numerous animal species (Wyttenbach, May, & Hoy,
1996; Baugh, Akre, & Ryan, 2008; Fischer, 1998; Nelson
& Marler, 1989). In songbirds, categorical perception shows
several parallels with human speech, such as population dif-
ferences in categorical perception (Prather, Nowicki, Ander-
son, Peters, & Mooney, 2009) dependent upon prior experi-
ence (Thielk, Sainburg, Sharpee, & Gentner, 2017), as well as
contextual dependencies influencing perceptual boundaries
(Lachlan & Nowicki, 2015). In speech, for example, phoneme
category perception is modulated by the position within a word
(relative to other phonemes) (Marslen-Wilson & Welsh, 1978),

and word category perception is modulated by semantic con-
text (Ganong, 1980). Recent investigations of songbird cate-
gorical perception have shown that similar to human speech,
swamp sparrows modulate their CP of notes as a function of
the position of the note in a syllable (Lachlan & Nowicki, 2015).

The computational and cognitive processes whereby con-
textual dependencies modulate CP are not well understood.
To study these processes directly we developed a simple
model to explain the interactions of stimuli and contextual
cues. When a stimulus varies upon a single dimension x, the
perceived value of x as a function of the true value of x and
contextual information can be described by Bayes’ rule:

P(xtrue | xsensed ,cue)︸ ︷︷ ︸
posterior

∝ P(xsensed | xtrue,cue)︸ ︷︷ ︸
likelihood

P(xtrue | cue)︸ ︷︷ ︸
prior

Where cue refers to a contextual cue. By modulating the
prior distribution of the categorical stimuli (x) with a cue, we
predict that the perception of x will shift.

Figure 1: Experimental paradigm.

To implement this context-related CP shift in a natural stim-
ulus environment, we created a two-alternative choice (2AC)
category learning task using established operant conditioning



techniques (Figure 1 top) in which songbirds were trained to
classify stimuli on a single dimension x, where x represents a
smoothly varying syllable of birdsong generated from an inter-
polation in the latent space of a deep convolutional variational
autoencoder (Figure 2) (Kingma & Welling, 2013). The stim-
uli generated from this interpolation (Figure 1, right) were split
into two groups, with the first half of the interpolation being
reinforced after pecking into the right response port and the
stimuli generated from the left half of the interpolation being
reinforced after a peck to the left response port (Figure 1 bot-
tom).

Figure 2: Generalized architecture of the convolutional varia-
tional autoencoder used. The number of neurons used in this
experiment differs from the visualization.

Preceding each to-be-categorized target stimulus (x), we
presented a cue stimulus, that provided predictive information
about the category of the target stimulus (Figure 3). By treat-
ing this cue stimulus as a prior probability over x, we predicted
that the determined posterior probability of x given sensory in-
formation and the cue stimulus would shift the classification
of stimuli near the boundary between the two classes in the
direction predicted by the cue stimulus.

Figure 3: Contextual cues in experimental paradigm. Cue
right (Cr) and Cue left (Cl) predict the reinforced right (Rr) and
reinforced left (Rl) stimuli differentially.

Explicitly, we treat the likelihood of a target being sensed
P(xsensed | xtrue,cue) as a Gaussian probability distribution
around the true target xtrue as in Kording and Wolpert (2004):
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and shift the prior probability as a function of the cue

P(xtrue | cue) =

{
cueprob xtrue ≥ 62
1− cueprob xtrue < 62

where cueprob represents the predictive probability of the cue
stimulus. We predict that birds will make a categorical deci-
sion based upon the posterior,

decision(xtrue,xsensed) = P(xtrue | xsensed ,cue)category(xtrue)

where category(xtrue) is simply the trained category label of x
in the 2AC task:

category(xtrue) =

{
0 xtrue ≥ 62
1 xtrue < 62

Under this model, the categorical decision of the bird would
be modulated by the prior, resulting in a shift in the inflection
point along the stimulus dimension in the direction predicted
by the cue (Figure 4 left), as opposed to a shift in the overall
likelihood that all stimuli (regardless of their location along the
stimulus dimension) will be categorized (Figure 4 right).

Figure 4: Additive (right) vs Bayesian integration (left) under
different cue probabilities (color).

Results
We trained a total of 9 European starlings on our task, of
which 7 birds learned the task to completion. One bird was
discarded because of an insufficient amount of interaction
with the operant conditioning device, and another was used
for physiological investigations before reaching the context-
dependency stage of the experiment.

Training paradigm
Birds were initially trained to differentiate between syllables
generated via the two endpoints in a single interpolation. Af-
ter several days of above-chance accuracy with one pair of
interpolation endpoints, the number of interpolation endpoints
was increased until the birds showed above accuracy classi-
fication of the endpoints of all 9 interpolations. After learning
the correct response for endpoints in each interpolation, birds
were transferred to the full stimulus set which included 127
stimuli (linearly spaced in latent space) spanning each of the
9 interpolations (1143 stimuli total). During this stage, the to-
be-classified target stimuli were preceded by one of the two



cue stimuli (p=0.5), such that the cue provided no information
about the following target stimulus.

After the birds were performing reliably above chance on
each full interpolation stimulus set for several days, we al-
tered the probabilities of the cue stimuli to provide context-
dependant information. Initially, we set the predictive probabil-
ity of each cue to its corresponding target to be 0.75. We then
used the data from the next several thousand trials, to pro-
duce a psychometric function. If the inflection point (the 50%
mark) of the fit psychometric function did not differ markedly
between the left and right cue trials, the predictive probability
was set to 0.875.

Psychometric Model
In each of the birds (n=7) we fit a psychometric (four parame-
ter logistic) function both to the overall responses to stimuli in
the left and right categories of the interpolation, as well as to
each individual interpolation.

Figure 5: Inflection point of fit psychometric functions given
cue.

We predicted a shift in the inflection point of the psychome-
tric function (seen as a horizontal shift in figure 5 above), con-
sistent with a shift in the location of the categorical boundary.
The results in each condition support this prediction. Overall,
the inflection point of each psychometric function was strongly
correlated with the information provided by the cue (r(34) =
0.78, p < 0.001).

Bayesian Model
In addition to fitting a psychometric function capturing the
shape of the behavioral responses, we fit a Bayesian model
reflecting our probabilistic hypothesis described above. This
model used five parameters: the shape of the Gaussian of the
likelihood (σsensed), a parameter corresponding to side bias in
the apparatus (γ), and parameters representing inattention to
the cue stimulus (δ), the target stimulus (β), and overall inat-
tention to the task (α).

biasside(γ) = category(xtrue)(1−2(1− γ))+1− γ

likelihood = P(xsensed | xtrue,cue)(1−β)+biasside(γ)β

posterior ∝ P(xtrue | xsensed ,cue)(1−α)+biasside(γ)α

prior = P(xtrue | cue)(1−δ)+biasside(γ)δ

Figure 6: Bayesian prediction from fit of the model with cued
priors (left) compared to that for flat priors on non-cued stimuli
(right).

Ongoing work will explore how the Bayesian model param-
eters fit to a flat prior predicts individual and stimulus specific
differences in biases to the categorical perception.

Physiological recordings

From trained subjects (currently n=3) and task-naive subjects
(n=2) we recorded extracellular spiking activity in secondary
auditory cortical regions NCM (caudo-medial nidopallium) and
CM (caudal mesopallium) during playback of the categorical
target and cue stimuli under light anesthesia (urethane) us-
ing 32 channel silicon probes. We spike-sorted (Chung et
al., 2017) raw waveform data into putative single or multi-
neuron sites, that were curated manually based upon wave-
form shape.

Figure 7: Overview of neural analysis. (A) audio from each
trial are played back. (B) Raster of spiking data from a single
neuron for the audio stimulus shown in (A). (C) Gaussian con-
volved PSTH of raster. (D) PSTH for each stimuli played back
in on interpolation. (E) The same data as in D, shown as a
heatmap.



Two playback conditions were used: one in which the cue
preceded the target stimulus, and one in which the target stim-
ulus was played back alone. In each condition, only 32 of the
full 127 interpolation stimuli were presented during physiologi-
cal recording due to time constraints. These stimuli were sam-
pled more densely around the midpoints in the interpolations
near the trained categorical boundaries.

For each stimulus and each sorted neuron, we computed
a Peri-Stimulus Time Histogram (PSTH; bin size = 5ms) of
each stimuli. We then convolved this PSTH with a Gaus-
sian (σ = 5ms). This smoothed PSTH can then be used to
compare single-neuron responses to individual stimuli as a
function of the interpolation point (Figure 8). Ongoing work
will explore within vs. between category similarity as well as
context-dependent responses in these populations.

Figure 8: Correlations of neural activity concatenated across
one population from CMM for one interpolation in latent space.
Categories are outlined in orange and green.

Conclusions
Categorical perception involves a non-linear mapping be-
tween physical sensory stimuli and their representation in per-
ceptual space, a phenomenon that appears to be fundamental
to sensory integration. It has been observed across species,
as well as across sensory modalities. This warping of percep-
tual space is not fixed. Contextual information can bias cat-
egorical perception, a phenomenon observed both in speech
perception (Marslen-Wilson & Welsh, 1978) as well as in wild
songbirds (Lachlan & Nowicki, 2015). Here, we explicitly
trained songbirds on a categorical perception task, in which
we actively modulated contextual information provided in the
task. We found that using this paradigm, we were not only
able to bias classification toward one category vs. the other,
but also to shift the classification boundary between the two
stimuli, a phenomenon which can be explained via probabilis-
tic integration. Further analyses into this data will explore the

physiological underpinnings behind the observed categorical
perception, and its contextual bias.
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