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Abstract: 

  

For many years, researchers in psychology, education, 

statistics, and machine learning have been developing 

practical methods to improve learning speed, retention, 

and generalizability, and this work has been successful. 

Many of these methods are rooted in common underlying 

principles that seem to drive learning and overlearning 

in both humans and machines. I present a review of a 

small part of this work to point to potentially novel 

applications in both machine and human learning that 

may be worth exploring. 

  

Keywords: learning, transfer, overfitting, skill 

acquisition, machine learning 

  

Introduction 

Researchers have long sought to bridge the divide between 

human and machine intelligence, developing neural 

network1, Bayesian2, and other models3 of human cognition. 

In practice, training humans and machines is fraught with 

many difficulties that have proven difficult to overcome. For 

many years, researchers and practitioners in both the human 

and machine learning fields have endeavored to develop new 

methods of improving learning quality and its generalization. 

While these two communities have made considerable 

progress in creating experimental methods to improve 

learner performance, they have identified and tackled similar 

problems without benefitting enough from the input of the 

other. We examine some ways in which learning problems 

for machines and humans are similar, and practical methods 

for improving learner performance in both humans and 

machines that may be worth exploring across disciplines. 

  

Building Learning Models 

The stages of skill learning in humans have similar correlates 

in machine learning. Skill acquisition is split into three 

phases: First, the Cognitive phase, during which skill 

performance is slow, highly variable, and requires 

considerable executive function to support task acquisition4. 

Here, patterns of corticostriatal activity that form the 

stimulus-response unitization of the task5, and this 

acquisition is regulated by executive networks such as the 

salience and cingulo-opercular networks6. Next, in the 

Associative stage, performance is more reliable, yet it is also 

fluid and less executive function is required. Corticostriatal 

function is still essential for execution of the skill during this 

stage, though as some parts of the task become offloaded to 

cortex and are automated, cortical processing becomes more 

important. Finally, in the Autonomous stage, performance is 

accurate and efficient, and little to no cognitive involvement 

is required. The task becomes highly specialized and 

inflexible, and slight perturbations in task-presentation will 

lead to drops in performance. In this stage, the corticostriatal 

system is no longer involved, and the skill has been 

automated and completely deposited in cortex7. This is 

exemplified by studies demonstrating that lesions to the 

striatum in rats selectively prevents the acquisition and 

accurate performance of any stimulus-response pairings in 

the Cognitive or Associative stages, but does not impact 

Autonomous, or overlearned, behaviors8. Some of our work 

has also implicated these corticostriatal circuits in complex 

skill acquisition and generalization in humans as well9,10. 

  

Overlearning and Overfitting 

Broadly, overfitting is a process by which a model becomes 

fit to a training set to the point where the model is complex 

enough to fit noise in the training set, resulting in worse 

performance in an out-of-sample set of data11. Overlearning, 

on the other hand, is the process by which a learner develops 

a skill to the point that the skill becomes automated, and very 

minor perturbations in the task can lead to significant 

decreases in performance7. These two domains are heavily 

studied aspects of human and machine learning. 

Understanding the extent to which the learning process from 

underfitting to overfitting is mirrored by these three phases 

of human skill acquisition is an important step for tying 

together human and machine learning research, and there are 

substantial parallels. For example, during the Cognitive 

phase, an underfit model of low complexity is constructed 

by the corticostriatal system, leading to lower accuracy and 

high variability in performance. As training continues and 

the skill becomes further unitized by the corticostriatal 

system, the learner reaches a peak of performance accuracy 

in both training and test sets. This stage represents a 

maximization of task flexibility that is similarly seen during 

the Associative stage of skill acquisition. Finally, during the 

Autonomous stage, as in the case of overfitting, the learner’s 

model has grown so large it fits the noise in the training data 

to the extent that the model becomes inflexible to new data, 



and test-set accuracy drops. The patterns of under-overfitting 

seem, at least at first glance, to have substantial overlap in 

human and machine learners. This, is most clearly 

demonstrated in independent fields of research showing that 

introducing variability into the training process has a 

beneficial impact on learning models in both humans and 

machines. 

  

Training for Variability 
  

In Humans 

Studies have demonstrated that introducing variability in the 

learning process can impact many aspects of the learning 

process. In the study of skill acquisition, researchers have 

demonstrated that changing the attentional focus of the 

trainee and its impact on skill acquisition. They showed 

changing the focus of the trainee from the task as a whole 

(Fixed Priority- FP) to subparts of the task in the context of 

performing the task as a whole (Variable Priority- VP) has a 

dramatic impact on the acquisition of the task12. In one 

training study, participants were given either the VP or FP 

training strategy in the acquisition of a complex cognitive 

and motor videogame, Space Fortress. FP and VP training 

was equally beneficial for participants with high initial 

performance, showing the same levels of performance 

improvement over twenty hours of training. With poor initial 

performers however, the VP training was so successful that 

after training they reached the same level of performance as 

the high performers had reached over 20 hours of training. 

On the other hand, the FP training was particularly difficult 

for the poor performing group, showing minimal skill 

improvement over the course of training12. 

    Another study demonstrated that this training technique is 

capable of overcoming age-related performance deficits as 

well. In a complex motor task where older adults tend to 

perform significantly poorer compared to young adults, 

groups of both young and old adults were trained with either 

a FP or VP training strategy. By the end of training, the older 

adults training with the VP were not only as good as the 

young adults by the beginning of training, but they matched 

the performance of the young adults after training as well13. 

This work suggests that in the learning of highly complex 

skills, learners for whom the task is quite difficult, benefit 

from tackling subparts of the task, and can be overwhelmed 

by the task as a whole at first. Furthermore, VP training has 

also been demonstrated to create more generalizable 

representations of the trained skills and improve transfer in 

dual-task training14. Computational models of the basal 

ganglia and cortico-striatal interactions in skill learning have 

also provided a theoretical framework for how FP training 

leads to overlearned and less flexible skill representations 

compared to VP training15.   

    Varying the training and feedback schedule also the 

impact have on learning and transfer. For example, training 

with randomized blocks of stimuli, leads to slower 

performance over the course of training as compared to fixed 

blocks of stimuli16. Randomized training also led to better 

performance after a 10-day retention test in both the fixed 

and randomized retest conditions, whereas the fixed block 

training led to much worse performance in the randomized 

block retest condition, indicating fixed training had led to 

development of overlearned and inflexible skills. This effect 

has been widely replicated in real world skills including 

keyboard skills17, and badminton18. 

    The same pattern of results have been found in training 

experiments where the feedback schedule varied. In one 

study, learners received performance feedback after every 1, 

5, or 15 trials19. Training error curves descended most 

quickly for trainees in the 1-trial feedback condition, more 

slowly for the 5-trial, and even more slowly for the 15 trial 

feedback conditions. By the end of six training acquisition 

blocks, all three conditions showed approximately 

equivalent performance, and after a 10-minute retention test, 

performance had decayed equally for all conditions. 

However, after a 2-day retention test, the performance of 

was highest for the 15-trial feedback condition, and worst for 

the 1-trial feedback condition, demonstrating that blocked 

feedback conditions had a significant impact in creating 

more generalizable acquisitions of the skill20. Similar effects 

have been found in a range of other motor training21, name 

learning22, and computer programming23 studies that 

manipulate feedback schedules. Generally, it seems slowing 

learning leads to greater generalization, and in human 

learning, a variety of methods have been developed to 

demonstrate this effect. Machine learning research, on the 

other hand, has developed alternative methods for increasing 

variability in the training process. 

  

In Machines 

There are several methods for increasing variability in the 

training process towards the end of improving 

generalizability in machine learning models. Perhaps one of 

the most popular areas of research in this domain are 

ensemble methods. Ensemble learning refers to a set of 

methods in machine learning by which a large group of 

learners are all deployed and by aggregating the models 

learned by these base learners, ensemble methods are able to 

reach higher performance and generalizability in their 

models. This method effectively increases the scope of the 

training set that the learners are exposed to, thereby 

increasing the range of models that are possible to learn, and 

creating an aggregate model of all these base models. One 

popular form of ensemble learning involves bootstrap 

aggregation, or bagging24. In this method, models are 

applied across many bootstraps of the samples and then 

averaged together. Bagging enables the final model to 

experience a greater range of solutions than would be 

considered with only a single learner alone. Many bootstraps 

of the observations are created and models are created for 

each one and then aggregated to create an average model25. 



Similarly, boosting is a machine learning technique where a 

range of weaker models that perform only slightly better 

than chance are subjected to weighted aggregation, based on 

their error in the training set, to form a single superior learner. 

Boosting and bagging have been shown to result in better 

predictive performance in supervised learning and less 

overfit models24,26. 

    Neural networks are well known for their tendency 

towards overfitting, but with enough training samples these 

methods produced well-generalized and high performing 

models. One popular method for enhancing performance in 

neural network research and practice is increasing the size of 

the training set. One popular method is creating altered, 

skewed, and noisy copies of the data to train on and mixing 

them into the training set to substantially increase both the 

size and variability of the training set. This has been shown 

to have significant impacts on prediction error and 

preventing overfitting27. Adding noise directly into the 

training set, called noise injection, is another popular method 

for creating variability in the training data, and is especially 

popular in neural networks. Recent work has demonstrated 

that adding noise to training data may reduce the tendency 

of neural networks to overfit to the training sample28. These 

methods of adding variability to the training data in neural 

networks seem to generalize to other learning methods as 

well, and have been implemented in other algorithms and in 

bioinformatics problems as well29. 

  

Transfer in Humans and Machines 

Transfer of learning has been studied in the human 

psychology literature for over 100 years30, and refers to the 

ability of what is learned in a training to be deployed in other 

contexts31, such as different times, places, tasks, orders, or 

many other forms32. The most widely held theory in this 

domain is known as the theory of identical elements: for skill 

A to transfer to skill B, A and B must share some identical 

elements that enables the transfer of the skill production. 

Broadly speaking, training and testing a machine learning 

model is a form of transfer assessment as well, and in this 

literature, people discuss the test set as being representative 

of the training set in much the same way that the human 

literature discusses identical elements between skills. Much 

more recently, the machine learning literature has focused 

on transfer learning more specifically, with the creation of 

many methods designed specifically to provide 

generalizable models that are trained to handle many tasks 

in one. Transfer learning is often used in deep learning, 

where pre-trained models are used as starting points in 

computer vision or language processing tasks, given the 

massive computational resources required to develop robust 

neural network models for these domains. Inductive transfer 

is the concept that the search space of possible models has a 

smaller range of allowable hypotheses, allowing for better 

initial performance and faster improvements in performance 

during training. The problem of transfer remains a 

substantial obstacle in both human and machine learning. 

These fields both have an extensive array of non-overlapping 

methods for manipulating the training and learning 

experience. They may work together for mutual benefit of 

studying and deploying more advanced training paradigms 

and learning agents to enhance learning and transfer. For 

instance, the human learning research has extensive 

experience with adjusting the training process in many ways 

that could be modeled and applied successfully in the 

machine learning literature; on the other hand, machine 

learning research has substantial experience in creating 

different types of learners, and demonstrating their relative 

effectiveness given different learner tasks, which could be 

an important method for modeling natural variation in 

human learners. 

  

Conclusions & Future Directions 

Of course, human and machine learning have more 

differences than similarities, but teaching human and 

machines to perform a task comes with a range of related 

challenges. In some regards both humans and machine 

learners face the same challenges, building models that 

improve performance but remain flexible enough to prevent 

overlearning, transferring previously learned productions to 

new contexts when appropriate. Both humans and machines 

seem to learn more slowly when more variable data are 

presented during training, and the resulting models 

developed are more generalizable. 

    Moving forward, we make a few suggestions for each 

field. Broadly speaking for human learning, this field might 

benefit from strategies common in machine learning creating 

and manipulating training data and methods of learner 

exposure to the training data. For example, we suggest that 

human learning may benefit from developing novel methods 

for generating altered or noisy training data to encourage the 

development of generalizable skill productions. Furthermore, 

human learning may benefit from developing efforts to 

methodologically drive learners back and forth between 

stages of learning, as can be in machine learning by using 

more or less complex models. 

    Generally, machine learning may benefit from strategies 

common in human learning of manipulating the framework 

of the training to enhance learning and generalization. For 

instance, particularly difficult problems may find benefit 

from exploring how training strategy, or ‘model focus’, may 

be varied over the course of training to improve learning, as 

in the case of the FP and VP training strategies in 

humans. Furthermore, machine learning research may find 

benefit in developing methods of manipulating feedback 

schedules to reduce learner sensitivity to error in prediction. 

There are likely many more areas of overlap, and methods 

used in one domain that may be of benefit to the other. We 

suggest an expanded and continued conversation. 
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