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Abstract

Models of sensory systems have traditionally been hand
designed from engineering principles, but modern-day
machine learning allows models to be learned from data.
We sought to compare hand-engineered and learned
models of the auditory system by generating synthetic
sound textures. We synthesized sounds that produce
the same time-averaged values in each model’s represen-
tation as those measured from a natural texture using
gradient-based optimization. Such stimuli should evoke
the same texture percept if the model replicates the rep-
resentations underlying auditory texture perception. Pre-
vious texture models involved statistics measured from
multiple stages of standard visual or auditory process-
ing cascades. We found that auditory textures generated
simply from the time-averaged power in the first layer acti-
vations of a task-optimized convolutional neural network
were as realistic and recognizable as the best previous
auditory texture model. Unlike textures generated from
traditional models, the textures from task-optimized fil-
ters did not require statistics from earlier stages in the
sensory model (i.e., the cochlear stage). Further, the tex-
tures generated from the task-optimized CNN filters were
more realistic than textures generated from a widely used
hand-engineered model of primary auditory cortex. The
results demonstrate that better sensory models can be
obtained by task-optimizing sensory representations.
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Introduction

Textures are typically generated by superpositions of large
numbers of similar elements, and are distinguished from
other sensory signals by homogeneity in time or space. As
such, textures are believed to be represented in the brain
with statistics that average information across space or time
(McDermott, 2013; Ziemba, Freeman, Movshon, & Simoncelli,
2016). Textures have been a fruitful avenue to explore sensory
representations in part because they are the only class of sig-
nals for which we have signal-computable models that come
close to accounting for perception. Texture models are com-
monly evaluated with synthesis: a set of statistics is measured
from a natural signal’s representation in the model, and a syn-
thetic signal is produced that has the same statistics as the
natural signal (Heeger & Bergen, 1995; Portilla & Simoncelli,

2000; McDermott & Simoncelli, 2011). A model that repli-
cates perceptual representations of textures should produce
synthetic signals that replicate the perceptual attributes of the
natural signals to which they are matched.

The statistics in traditional visual and auditory texture mod-
els are somewhat ad-hoc, assembled through a process of
intuition-guided trial-and-error. Moreover, multiple classes of
statistic are required to attain synthetic textures that replicate
the qualities of natural textures. For instance, the texture
model in McDermott and Simoncelli (2011) relies on the cor-
relations between pairs of filters in addition to marginal statis-
tics. These traditional models also rely on statistics measured
from multiple stages of the underlying sensory cascade (for
instance, statistics from cochlear filters as well as subsequent
stages of modulation filters) in order to produce realistic tex-
tures. Relying on statistics from multiple stages is in some
cases difficult to justify. For instance, it may be implausible to
suppose that decisions could be based directly on the output
of the cochlea. We were interested in whether a single, sim-
ple class of statistic (variance) measured at a single stage
of an appropriate auditory model could replicate the multi-
stage, multi-statistic representation of traditional texture mod-
els (McDermott & Simoncelli, 2011).

Task-optimized convolutional neural networks have been
shown to outperform traditional hand-engineered models of
both the auditory and visual system for predicting neural ac-
tivity (Yamins & DiCarlo, 2016; Kell, Yamins, Shook, Norman-
Haignere, & McDermott, 2018). Prior literature suggests
that the representations learned by these models can pro-
duce realistic visual textures (Gatys, Ecker, & Bethge, 2015;
Ustyuzhaninov*, Brendel*, Gatys, & Bethge, 2017; Wallis et
al., 2017), and we sought to explore the relevance of compa-
rable audio representations for sound texture. The first layer of
2D-filters of a CNN trained on a cochleagram representation
can be thought of as spectrotemporal modulation filters (filters
that act in frequency and time), and thus can be compared to
prior models of primary auditory cortex (such as that in Chi,
Ru, and Shamma (2005)). Here, we compared textures gen-
erated from: (1) the first layer of filters from three convolutional
neural networks optimized for different tasks (2) the randomly
initialized filters from the same architecture (3) a model of pri-
mary auditory cortex consisting of spectrotemporal filters, and
(4) the McDermott and Simoncelli (2011) texture model (con-
sisting of marginal moments and correlations from cochlear
and temporal modulation filters).
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Figure 1: Neural network architecture. The time-averaged power from the activations of the first convolutional layer was used as
the texture model.

Methods

CNN training

The convolutional network consisted of 5 rectified convolu-
tional layers, 5 pooling layers, a fully connected layer, and
a final softmax classification layer (architecture details are in
Figure 1). All pooling layers downsampled by a factor of 2, us-
ing a weighted average with a hanning window. Convolutions
were performed in two dimensions, such that the learned con-
volutional filters were shared across frequency and time.

The input to the first convolutional layer of the network was
a “cochleagram”. To generate the cochleagram, a natural
sound was sent through a filter bank modeled after the human
cochlea. The filterbank consisted of 171 filters, spaced be-
tween 20Hz-8kHz. The envelope of each audio subband was
extracted via the Hilbert transform, downsampled to 200Hz,
and passed through a compressive nonlinearity. This yields
a cochleagram representation, similar to a conventional spec-
trogram with frequency on the y-axis and time on the x-axis,
but with frequency resolution based on the human cochlea.
We consider the transformations from waveform to cochlea-
gram as a cochlear model, and compare the synthesis with
and without statistics measured from these stages (which are
critical to traditional texture models).

Other statistics used for model comparisons are measured
from the activations of the first convolutional layer (consisting
of 96 30x30 filters), which acts on the cochleagram. We refer
to these as “cortical” features, as primary auditory cortex is
commonly modeled with spectrotemporal filters that act on a
cochleagram Chi et al. (2005).

The same architecture was trained on three different tasks
for comparison: (a) classification of the word in the middle of
a clip from 588 possibilities (b) classification of the speaker in
clip from 789 possibilities (c) classification of the genre of mu-
sic from 42 possibilities. The target sound was embedded in
background noise for each of the tasks. The training sounds
and task parameters were the same as those described in
Kell et al. (2018). Performance of the trained networks on the
tasks was comparable to humans, with top 1 accuracy of 78%
for the word task, 91% for the speaker identification task, and
45% for the genre task. Sound were also synthesized from
a random network with untrained weights to disambiguate ef-
fects of training from those inherent to the model architecture.
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Figure 2: Diagram of sound synthesis pipeline.

Hand-engineered filter bank
A set of hand-engineered spectrotemporal filters were taken
from a commonly-used model of primary auditory cortex (Chi
et al., 2005). They consisted of a set of gabor-like spectrotem-
poral filters tuned to specific spectral and temporal modula-
tions. Ninety-six filters were used to match the number in
the first layer of the CNN. Eight temporal filters were spaced
between ± 0.5-64 Hz and six spectral filters were spaced
between 0.25-8 cycles/octave. Each of the temporal filters
at 0.5Hz were lowpass to capture DC components in the
cochleagram representation.

We also compared the results directly to textures generated
from the full model in McDermott and Simoncelli (2011), which
contains the moments and correlations of a sound decompo-
sition similar to that in the subcortical auditory system.

Sound synthesis
Synthetic stimuli were synthesized to have the same mea-
sured filter statistics as a natural sound. Measured “cor-
tical” features comprised the time-averaged power in each
of the spectrotemporal filters (either task-optimized for hand-
engineered). Cochlear model features, when included, were
the first four moments of the cochlear subbands and their
envelopes, as have been used in previous texture models
McDermott and Simoncelli (2011). The synthetic signal was
initialized with pink noise. Gradient descent was performed
on the waveform to minimize the difference between its model
responses and those of the target natural sound, and iterated
until the statistics were the same (Figure 2).
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Figure 3: Recognition (left) and realism (right) of synthetic
textures generated from the filters optimized for work recog-
nition or from random filters, with and without the inclusion of
cochlear statistics.

Recognition and realism experiments

We performed two experiments - a sound texture recognition
task and a realism rating task - to assess whether the syn-
thetic results generated from each model were perceived simi-
larly to natural textures. Sounds included in these experiments
were drawn from the texture set used in McDermott and Si-
moncelli (2011). A seven-second clip of each texture was syn-
thesized, and two-second segments were extracted to avoid
any boundary effects from the synthesis algorithm. For the
recognition experiment, subjects were presented with a two-
second sound and identified the sound from 6 candidate de-
scriptions. For the realism experiment, subjects first listened
to the original sound, and then were presented with synthe-
sized examples from the different models and asked to rate
the sounds from 1-7 based on their similarity to the original
(a MUSHRA paradigm). All experiments were run on Amazon
Mechanical Turk, and subjects were screened for headphone
usage (Woods, Siegel, Traer, & McDermott, 2017). Error bars
and significance tests were obtained by bootstrapping across
subjects.

Results
Textures generated from power statistics of the first layer filters
of a CNN were as recognizable and realistic as those from the
previous McDermott and Simoncelli model (Figure 3). More-
over, the task-optimized filters produced more realistic and
recognizable textures than the hand-engineered spectro tem-
poral filters, suggesting a benefit to learned filters. To get in-
sight into the source of the difference between the two sets of
filters, we tested the effect of also including statistics from the
cochlear filter model stage (as are present in the original Mc-
Dermott and Simoncelli model). Cochlear marginals alone do
not produce realistic or recognizable textures, but their inclu-
sion increased the realism and recognizability of the textures
from the the hand-engineered filters. This increase did not oc-
cur for the task-optimized filters, suggesting that they are im-
plicitly encoding the perceptually relevant statistics from lower
stages in the sensory model. Cochleagrams corresponding to

sounds from these model comparisons are shown in Figure 4.
Textures generated from random filters were less recogniz-

able and realistic than those generated from the filters opti-
mized for the word-in-noise task (Figure 5), though they sim-
ilarly did not benefit from the inclusion of cochlear statistics.
This suggests that task-optimization helps to generate filters
that capture perceptually relevant information, and that the
CNN architecture alone is not enough.

The exact task that the network was trained on did not
greatly influence the recognizability of the synthetic textures
(Figure 6) – first layer filters from networks trained on the
genre or speaker id tasks produced comparably realistic tex-
tures to those from the word-in-noise task. In all cases,
cochlear statistics did not improve recognizability for any of the
task-optimized networks, suggesting that all of the tasks force
the filters to implicitly encode perceptually relevant cochlear
features.

Discussion
The results demonstrate that realistic and recognizable sound
textures can be generated simply by measuring and matching
power statistics from a single layer of spectro-temporal filters
acting on a cochleagram representation. These statistics pro-
duce textures that are as recognizable and realistic as previ-
ous textures models that measure multiple classes of statis-
tics at multiple stages of a sensory cascade (McDermott &
Simoncelli, 2011). A commonly used hand-engineered model
as well as a set of random filters produced lower quality tex-
tures. This suggests that the representations learned through
task-optimization may more closely resemble biological sen-
sory systems than traditional hand-engineered auditory mod-
els.
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Figure 4: Example cochleagrams for the original and synthetic sounds. Music and speech are included for comparison with the
stationary textures.
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Figure 5: Recognition (left) and realism (right) results com-
paring the word-optimized filters to randomly initialized filters.
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Figure 6: Recognition results comparing sounds generated
from the three task-optimized networks.
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