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Abstract
Vision science - particularly machine vision - is being
revolutionized by large-scale datasets. State-of-the-art
artificial vision models critically depend on large-scale
datasets to achieve high performance. In contrast, al-
though large-scale learning models (e.g., models such
as Alexnet) have been applied to human neuroimaging
data, the image datasets used on neural studies often
rely on significantly fewer images. The small size of these
datasets also translates to limited image diversity. Here
we dramatically increase the image dataset size deployed
in an fMRI study of visual scene processing: over 5,000
discrete image stimuli were presented to each of four par-
ticipants. We believe this boost in dataset size will bet-
ter connect the field of computer vision to human neuro-
science. To further enhance this connection and increase
image overlap with computer vision datasets, we include
images from two standard artificial learning datasets in
our stimuli: 2,000 images from COCO; 2 images per cat-
egory from ImageNet (∼ 2000). Also included are 1,000
hand-curated scene images from 250 categories. The
scale advantage of our dataset and the use of a slow
event-related design enables, for the first time, joint com-
puter vision and fMRI analyses that span a significant
and diverse region of image space using high-performing
models.
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Introduction
Recently, artificial vision models have been introduced as po-
tential proxy model of neural representation. The reason for
the inclusion of artificial vision models is self-evident when
one considers the leaps in machine vision progress in the last
few years. Thus, many recent works have leveraged the feed-
forward hierarchical structure in neural networks to their ad-
vantage. That is, they compare low/mid/high neural reponses
in visual processing extracted via neuroimaging with predicted
similar level features in a pre-trained network (network already
trained on a dataset for a specific task). Neural networks have
shown to be more predictive of neural responses in higher lay-
ers in the visual hierarchy (Yamins et al., 2014). Additionally,
neural networks have also proven to better model human dy-
namics underlying scene representation (Cichy, Khosla, Pan-
tazis, Torralba, & Oliva, 2016) compared to standard models
of scene and object perception, GIST descriptors (Oliva & Tor-

ralba, 2001) and HMAX models (Riesenhuber & Poggio, 1999;
Serre, Wolf, & Poggio, 2005).

With the success in modeling neural data elicited from tasks
ranging from scene understanding to object recognition, the
incorporation of neural networks as models and analysis tools
for biological vision is unavoidable and imperative. Further-
more, increased visual perception understanding alludes that
the study of vision science can no longer be isolated into sep-
arate spheres of biological and machine vision. We argue that
further progression in vision science will require intertwined
biological and machine vision approaches. However, one of
the biggest obstacles for integrating across the fields of bio-
logical and machine vision is data, more specifically a lack of
neural data.

The first data consideration is size. The general success
in neural networks can be largely attributed to large-scale
datasets. High performing neural networks are trained and
evaluated on several standard large-scale image datasets. In
contrast, although large-scale learning models have been ap-
plied to human neuroimaging data, the image datasets used
in neural studies often rely on significantly fewer images - typi-
cally a few hundred due to time-constrained experimental pro-
cedures.

The second data consideration is diversity. The small size
of datasets also translates to a limited diversity of images
used in neural studies. The images commonly used in neu-
ral studies only encompass a small subset of the entire image
space. While object recognition has been studied intensively
(Khaligh-Razavi & Kriegeskorte, 2014) and in isolation, the
typical amount of object categories are not more than 100 cat-
egories. However, image datasets used to train and evaluate
neural networks encompass a wide range of naturalistic and
realistic images with up to thousands of categories. For ex-
ample, a facial image for neural studies is generally center fo-
cused on a face with no noisy background, while a facial image
in most artificial vision datasets contains a rich, complicated,
and semantically meaningful background with no guarantees
of a centered face.

The small scale of neural data and the lack of image feature
diversity inherently limit 1) the ability to compare model and
measured neural representations and 2) the amount of data
that can by modeled by networks.

We address these two data concerns in our newly gath-
ered slow-event related functional magnetic resonance imag-
ing (fMRI) dataset collected from four subjects. To address
data size, we dramatically increase the image dataset size



Figure 1: Sample images from each dataset.

deployed in an fMRI study of visual scene processing, scal-
ing the number of images by over an order of magnitude rela-
tive to most earlier studies: 5,254 discrete image stimuli were
presented to each of four participants. Importantly, the slow-
event design allows us to isolate the signal to each individ-
ual trial, without any bleed-over from neighboring trials. Thus,
our dataset will be widely accessibly without the need for ad-
vanced disentangling algorithms. Finally, we will be publicly
releasing the dataset to prompt future collaborations between
neuroscience and computer vision.

Methods
We will be discussing our methods for data collection in this
section.

Stimulus Selection

The visual stimuli presented to each subject is comprised of
a total of 5,254 images, of which 4,916 images are unique.
The images breakdown into these three datasets: i) 1,000 im-
ages from scenes, indoor and outdoor. ii) 2,000 images from
the Common Object in Context (COCO) dataset (Lin et al.,
2014). iii) 1,916 images from the ImageNet dataset (Deng et
al., 2009). Chosen samples used for stimuli from each of the
three major datasets are shown in Figure 1.

Firstly, for the scene stimuli, we have 250 unique scene
categories chosen mostly from the SUN dataset (Xiao, Hays,
Ehinger, Oliva, & Torralba, 2010). We then choose 4 exem-
plars per category to add to a total of 1,000 scene stimuli.

Second, for the COCO stimuli, we randomly select 2,000
images from COCO training set with a random sampling. The
random sample scheme is structured such that it considers
the various annotations that accompany each COCO stimu-
lus. Thus, we maintain various image statistics in our sam-
pled data, which ensures that our chosen stimulus set is an
accurate representation of the original training set.

Thirdly, for the ImageNet stimuli, we use the standard 1,000
class categories in ImageNet for our image selection. How-
ever, due to the extreme affective nature of some image cat-

egories, such that they might evoke emotional responses, we
remove 42 categories. For each category, we randomly select
2 exemplars per ImageNet category from the ImageNet train-
ing set that fulfill our image size and resolution criteria. With
958 categories and 2 exemplars per category, we have a total
1,916 ImageNet stimuli.

All stimuli are RGB and of size 375 x 375.

fMRI Data Presentation

The fMRI data was collected from a total of 4 subjects, (all ses-
sions collected from 3 subjects and half of the sessions col-
lected from 1 subject due to withdrawl from the study). Each
subject participated in 16 sessions. All 5,254 images were
presented through a total of 15 functional sessions. 4,916 im-
ages were presented once, and 113 were presented an addi-
tional three times. The remaining session contained anatomi-
cal and diffusion scans, and additional localizers.

Each functional session was 1.5 hours long with 9 or 10
image runs. More specifically, there were exactly 8 sessions
with 9 image runs and 7 sessions with 10 image runs. In the
sessions with only 9 image runs, we included an additional
functional scene localizer run at the end of the session. Thus,
we had a total of 8 scene functional localizer runs in order
to independently define regions of interest and assess data
quality and consistency through the study.

During each run 37 stimuli were presented. In order for
each runs stimuli to accurate represent the entire image
dataset, each runs stimuli dataset category was proportion-
ally the same as the overall dataset. More specifically, in our
dataset roughly 1/5th was scene images, 2/5th was COCO
images, and 2/5th was ImageNet images. Similarly, the run
stimuli break down into 1/5th scenes, 2/5th COCO, and 2/5th
ImageNet. Of the 37 stimuli, roughly 2 were repeated images.
Thus with 35 unique stimuli per run, 7 were scene images, 14
were COCO images, and 14 were ImageNet images. How-
ever, because the total number of images do not divide nicely
into 7s, some sessions contained a slightly imbalanced por-
tion of categorical images by a factor of 1 image.



Each run began with a 6 second fixation cross and ended
with a 12 second fixation cross. Following the initial fixation
cross, all 37 stimuli were shown sequentially. Each stimulus
was shown for exactly 1 second followed by a 9 second inter-
stimulus interval.

Each subject was asked to perform a basic valence task for
every stimuli. They rated how much they liked each image by
making a button response using this metric: ’like’, ’neutral’,
’dislike’. They responded after the stimuli was presented dur-
ing the 9 seconds of interstimulus fixation.

fMRI Data Acquisition
Functional MRI data was acquired on a 3T Siemens Verio MR
scanner at the Scientific Imaging and Brain Research Cen-
ter at Carnegie Mellon University using a 32-channel head
coil. Functional images were collected using a T2*-weighted
echoplanar imaging pulse sequence: 69 slices parallel to the
AC/PC; in-plane resolution 2 x 2mm; 2mm slice thickness
(no gap); interleaved acquisition; 212mm field of view; 6/8th
phase partial Fourier; multi-band factor = 3; TR = 2000ms;
TE = 30ms; flip angle = 79 degrees. Each scene run con-
tained 194 volumes, and each functional localizer run con-
tained 141 volumes. To reduce motion and maintain consis-
tent head placement and alignment across sessions, Head-
cases (CaseForge, Inc.) customized for each participant were
used. Data was motion corrected within and across session
for further analysis.

Results
We analyze our dataset via two main methods: 1) Represen-
tational Similarity Analysis (RSA), 2) Nearest Neighbor. We
perform RSA on the correlation between neural responses
and AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) features.
Neural responses are extracted from regions of interest (ROIs)
we have identified through our functional localizers. Nearest
neighbor experiments are performed on defined ROIs as well.
We perform nearest neighbor within voxel space and visual-
ize results by viewing the stimulus responsible for the neural
response.

Discussion
We address one of the biggest obstacles for integrating across
the fields of biological and machine vision - data. Thus far,
neural datasets are lacking in 1) size, 2) diversity, and 3) stim-
uli overlap with existing computer vision datasets. We address
all concerns in our new dataset where we successfully collect
a large-scale, diverse fMRI dataset on 5,254 stimuli that is
publicly available. Our data is 1) significantly larger than ex-
isting slow-event neural datasets by an order of magnitude, 2)
extremely diverse in stimuli, 3) considerably overlapping with
existing computer vision datasets.

Additionally, we leverage the magnitude of our data and
demonstrate the stability and quality of our data through near-
est neighbor. The nearest neighbor results illustrate that we
can discern image content form individual scenes. Further,
we are able to explore the stimuli relation to other images.

The success of our nearest neighbor results is a proof of con-
cept that we have the ability to analyze images through neu-
ral data. More importantly, semantically-similar stimuli in top
nearest neighbors of various stimuli suggests that we have cu-
rated a new set of rich image representations. Similar to how
neural networks have been able to provide rich semantically
meaningful representations, these neural image representa-
tions likewise contain semantics beyond language. Without
the restriction and bias of human language, this neural dataset
provides the potential to explore visual semantics that have yet
to be considered in both neuroscience and computer vision.
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