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Abstract

Humans rarely encounter speech without back-
ground noise. However, research on the cortical
mechanisms of speech processing mostly focusses
on individual speech features in isolation, which
might not generalize to a more naturalistic envi-
ronment. To examine the mechanisms of speech
processing in natural soundscapes, we use un-
supervised learning to infer spectro-temporal pat-
terns that are adapted to the statistics of speech
in noise. Using these patterns, we predict fMRI
activity (n=20) evoked by a long auditory stimulus
with voxel-wise encoding models and find a latent
space of predicted brain activity that is shared be-
tween participants and represents the perceived
noise level of the stimulus. Activity in the latent
space forms two clusters, one representing stimuli
with varying noise level related to the presence of
simple, time-frequency separable patterns, and an-
other consisting of stimuli with uniformly low per-
ceived noise level. The cluster representing noisy
stimuli explains variance in secondary auditory ar-
eas, through reduced activation for very noisy stim-
uli, while the cluster consisting of clear speech ex-
plains variance in both primary and secondary au-
ditory areas. This shows how features adapted
to speech in a natural soundscape relate to differ-
ences in the subjective percept of noise and the re-
sulting dichotomy in brain activity.

Keywords: fMRI; auditory; encoding models; unsuper-
vised learning; speech processing

Introduction

Every day humans encounter a multitude of auditory en-
vironments in which speech is embedded in an auditory
background. However, most research on the cortical
mechanisms of speech processing focusses on clear or
computer-altered speech (Mattys et al., 2012; Holdgraf,
De Heer, et al., 2016). This research has generated in-
sights on the neuronal processing of speech (Friederici,

2012; DeWitt and Rauschecker, 2012) by isolating the ef-
fect of a-priori chosen features (like phonemes) on brain
activity, but it is not clear which speech representations
remain relevant for the neuronal processing of speech in
natural soundscapes.

Previous studies show that visual features adapted to
the statistics of natural images outperform a-priori cho-
sen features in the prediction of functional magnetic res-
onance imaging (fMRI) data (Gucli and Gerven, 2014)
and sparse coding approaches can find complex auditory
representations of clear speech or environmental sounds
that resemble neuronal receptive fields (Mtynarski and
McDermott, 2017), but so far no study combined statisti-
cally inferred auditory features with predictive models of
fMRI data to show how features adapted to the natural
statistics of speech in an auditory background relate to
cortical activity.

We fill this gap by training voxel-wise encoding models
(Naselaris et al., 2011; Holdgraf, Rieger, et al., 2017) to
predict fMRI activity elicited by a long, naturalistic stim-
ulus of speech in a continuously varying soundscape
from auditory features learned by a sparse coding ap-
proach. To account for inter-individual differences in
neuroanatomy, we functionally link individuals across
shared voxel responses (Lashkari et al., 2010).

This allows us to find functional components — voxel
response patterns —, that are highly similar across partic-
ipants and whose predicted activation form two clusters.
One cluster consists of predicted brain activity due to
speech stimuli that are homogenously rated as clear and
subsequently represented by learned auditory features
with higher complexity. Stimuli that are perceived as
noisy, but with varying levels of noisiness, lead to pre-
dicted brain responses that form a second cluster shared
across individuals. In this cluster, stimuli represented
by simpler, time-frequency separable, spectro-temporal
patterns are rated as more noisy.

These clusters predict brain activity in different regions:
one cluster predicts variation in mostly secondary au-



ditory areas for higher perceived noise ratings, while
the cluster of clear speech stimuli predicts variation in
primary and secondary auditory cortex.

Methods
Data

All data were acquired from the OpenfMRI portal, at
http://openfmri.org/dataset/ds0001113. Hanke et
al. (2014) presented the two hour long German audio-
description of the movie "Forrest Gump” to twenty par-
ticipants while fMRI activity was recorded in a 7-Tesla
sccanner.

Data-driven stimulus representation

We use unsupervised learning (Murphy, 2012) to statisti-
cally infer spectro-temporal patterns — basis functions —
that represent the stimulus. We choose a sparse coding
(Olshausen and Field, 1997) approach, because sparse
coding tends to produce patterns that are similar to the
tuning properties of visual (Olshausen and Field, 1997)
and auditory (Mtynarski and McDermott, 2017) sensory
neurons. To learn basis functions from auditory stimuli,
we use binary sparse coding (BSC) which constrains
their activations to be binary — either a pattern is present
or not — similar to the spike of a sensory neuron (Hen-
niges et al., 2010). Using this method, we find 200 basis
functions that decompose the audio data into a set of
sparsely activated spectro-temporal patterns with differ-
ing complexity. Each pattern is 100ms long, with ten
time-steps consisting of 48 Mel frequencies.

Voxel-wise encoding models

Due to the focus on speech and auditory processing of
voxels, we limit our analysis to voxels in the temporal
lobe (115421 voxels each of size lmmaxz1lmmazlmm per
subject). To account for the delay and temporal integra-
tion of the BOLD response we split the movie into six
second segments and concatenate the corresponding
BSC basis activations to use as time-lagged stimulus
representation. For each voxel (and subject) we train
a regularized linear regression to predict the fMRI sam-
ple located four seconds after the time window from
the concatenated BSC features. To validate the voxel-
wise encoding models and study patterns in predicted
brain activity, we use cross-validation to predict the voxel
activity for each of the eight runs of the movie. The
predicted brain activity — a matrix of fMRI samples N
times voxels V' — can be compared to the observed brain
activity to derive a correlation score between predicted
and observed brain activity in each voxel, but we can
also use dimensionality reduction to find sets of voxels
for which our encoding models make similar predictions.
To find these patterns, we use principal component anal-
ysis (PCA) to decompose the NzV matrix of predicted
brain activity across voxels: each resulting, orthogonal

component represents a time-course of predicted activ-
ity in response to the stimulus that is shared by multiple
voxels. Using dimensionality reduction allows us to go
from a matrix of activity in voxels to a lower dimensional
matrix of activity in functional components, ordered by
their explained variation. This matrix forms the core of
our subsequent analysis.

Functional patterns in predicted brain
activity are shared between individuals

We now quantify the similarity of these functional pat-
terns between individuals. Therefore we compute the
correlation between the time-series of each principal
component between participants, i.e. correlation be-
tween the time-series of the first component for each
set of participants, and show the resulting correlation
matrices — one matrix for each component — in Figure 1,
as well as the boxplots of the upper diagonal elements of
the correlation matrices. The first three components are
similar across participants, with a sharp drop in similarity
for the fourth and fifth component. Because predicted
brain activity is similar between individuals only in the
first three components, all further analyses use this three
dimensional latent space.
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Figure 1: Boxplots of all between-participants correla-
tions between their component time-series and the cor-

relation matrices of the component time-series, where
each row and column denote one specific participant.

Functional patterns reveal a dichotomy
between clear and noisy speech

By relating components of predicted brain activity across
individuals, we find a three dimensional space that can
represent predicted brain activity in all participants, but it
does not provide an interpretation what causes the distri-
bution of predicted brain activity in this space. Since we



are interested in the effect of an auditory background on
the neuronal representation of speech, we obtain ratings
on the perceived noisiness (on a scale of zero to six) of a
subset of the auditory stimulus from 18 participants, that
were not involved in the collection of the fMRI data. To
relate this saliency of speech versus noise to activation
in the space of predicted brain activity, we average the
activation of the first three components across partici-
pants and show the noise ratings averaged across raters
in the first two functional components (Figure 2 A). We
use a Gaussian mixture model with two components to
find clusters in the first three components and color all
data points by their assigned cluster. Due to the differ-
ent noise ratings between the two clusters (mean noise
rating of 1.43 and 3.80, ¢t = 19.27, p < 0.0001), we term
one cluster "noisy speech” and the other "clear speech”.

In the first two components the majority of stimuli form
a center of mass that includes stimuli rated as clear
or slightly noisy (2 A, lowest circle), from which one
cluster extends along similar activation of the first and
second component (right circle), consisting mainly of
clear speech and one cluster mainly along the second
component that consists of stimulus parts rated as noisy
(upper circle). Activation in the first dimension in this
space negatively correlates with stimulus loudness in
decibel (r = —0.78, p < 0.0001). To relate activity in
these clusters to predicted brain activity, we reconstruct
voxel-wise predictions from fMRI samples belonging to
three areas in this space (dashed black circles). Figure 2
B shows the predicted fMRI activity for each area, aver-
aged across samples and participants. Predicted brain
activity in the area of clear and quiet stimuli is negative
in primary auditory areas and close to zero in secondary
auditory areas. Louder and slightly more noisy stimuli
lead to predicted brain activity that is positive in both
primary and secondary areas, and stimuli that are loud
as well as noisy lead to positive predicted brain activity
in primary auditory areas, and negative predicted brain
activity in secondary auditory areas. Comparing pre-
dicted fMRI activity to observed fMRI activity belonging
to either cluster (Figure 2 C) shows that both clusters
explain variance in primary and secondary auditory ar-
eas, however the cluster of noisy stimuli explain more
variance in secondary than in primary auditory areas.

Figure 3 A shows the average time-frequency separa-
bility — a measure of the complexity of receptive fields
(Mazer et al., 2002) — of the spectro-temporal basis func-
tions that are used to represent movie segments in the
two clusters. In the cluster of noisy speech, an increase
in perceived noise level is related to an increased pres-
ence of easily time-frequency separable basis functions
(r = .34, p < 0.0001). Figure 3 B shows several ex-
amples of spectro-temporal patterns with high and low
time-frequency separability, that are used to represent
the auditory stimulus.
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Figure 2: A Scatter plot of each movie segment’s ac-
tivation of the first two components and the average
perceived noise level of a subset of the movie. Cluster
analysis reveals differing patterns for speech in quiet and
speech in noise. B Average predicted activity for fMRI
samples belonging to three areas in the latent space.
C Out-of-sample correlation between predicted and ob-
served fmri activity reconstructed from shared clusters
in the latent space for stimuli containing speech in noise
and speech in quiet, shown for exemplary individuals
and averaged across individuals.
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Discussion

We use binary sparse coding to infer spectro-temporal
patterns that are adapted to the natural statistics of a
long auditory stimulus consisting of speech in a natural
soundscape. We predict fMRI activity with voxel-wise en-
coding models from these spectro-temporal patterns and
combine the resulting models with dimensionality reduc-
tion of (predicted) voxel response time-courses (Lashkari
et al., 2010). This allows us to relate the low dimensional
distribution of predicted brain activity to perceptual (rated
noise levels) and physical (loudness) properties of the
stimulus to gain insight into the resulting predicted ac-
tivation of primary and secondary auditory cortex. We
then show which stimulus features predict a higher noise
rating (a larger proportion of simple, time-frequency sep-
arable spectro-temporal patterns) and show how the
presence of this feature explains the observed dichotomy
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Figure 3: A Boxplots of the average time-frequency sep-
arability of basis functions that are active in the movie
segments belonging either to the noisy or clear speech
cluster. B Examples of time-frequency separable and
nonseparable learned spectro-temporal basis functions.

between clear speech and noisy speech in the stimulus,
in predicted brain activity, and in the resulting percept.
Finally, the presence of these highly separable basis
functions are associated with a reduction in predicted
activity in secondary auditory areas. By incorporating
subjective ratings of individual stimuli, we provide a rec-
onciliation of results from laboratory settings that show
reduced activation in secondary auditory areas for high
noise levels (Scott and McGettigan, 2013) with results
that show increasing robustness to noise along the au-
ditory pathway (Kell et al., 2018): predicted activation
of secondary auditory areas remains positive for low to
medium perceived noise levels (Figure 2 A, lowest circle)
and only drops in the high noise condition (Figure 2 A,
rightmost circle). This provides a perspective on how
features adapted to speech in a natural soundscape re-
late to differences in the subjective percept of noise and
the resulting dichotomy in brain activity.
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