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Abstract:

Representational similarity analysis (RSA) has become a 

valuable and common tool in the understanding of 

cortical representations across diverse cognitive 

arenas. However, RSA typically employs assumptions 

that may bias model comparisons. Our present work 

identifies common statistics of cortical responses in 

object perception and finds that these responses may 

support inflated model comparison results with unusual 

resistance to noise. Similarly, we find differing 

constructions of permutation tests alter perceived 

significance of model-cortical matches. We employ an 

fMRI voxel searchlight method to compare local cortical 

responses to sixty objects, with 218 diverse candidate 

semantic groupings of the same objects. We find 

semantic properties with the highest cortical 

correlations are high skew distance matrices, while the 

lowest cortical correlations are often low skew. We also 

find additional restrictions on “randomized” 

permutations may be required for more accurate 

assessment of statistically significant matches in RSA. 
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Background 

Representational similarity analysis (RSA) is a valuable 

tool to observe and model complex patterns in 

cortical information processing (Kriegeskorte 2008). 

For a selected brain region or computational model, a 

pairwise distance matrix can be computed to reflect 

what stimuli are grouped together or set apart. These 

groupings may be compared to identify the best 

model matching cortical behavior. The approach of 

matching distance matrices allows us to judge a 

model’s descriptive power without requiring an exact 

(likely non-linear) mapping between model and 

cortical responses to a base set of stimuli.  

Accordingly, the RSA approach has gained 

substantial traction, e.g., in studying the link between 

computer vision models and biological vision. (e.g., 

Leeds 2013, Khaligh-Razavi 2014) RSA  has been 

used successfully across species, recording 

modalities, and cortical regions. (Kriegeskorte 2008, 

Leeds 2013, Devereaux 2013)  Our present work 

benefits from RSA in identifying a common class of 

semantic representations during visual object 

perception. However, we also find evidence that the 

unifying statistic of these semantic models may have 

an undue advantage in apparent strong fMRI 

representational correlations. We also find the typical 

assessment of significance through permutation test 

requires additional constraints when applied to RSA.  

Methods 

fMRI data collection 
 

We study fMRI BOLD data recorded by Leeds (2013), 

obtained from three subjects recruited from the 

Carnegie Mellon University Community. Subjects view 

60 visually and semantically diverse object stimuli - 

including mammals (e.g., dog, bear), vehicle (e.g., car, 

plane), tools (e.g., hammer, spoon), dwelling places 

(e.g., house, apartment building), etc.. Each stimulus 

was represented through a single corresponding 

photograph and corresponding word label - displayed 

during separate, disjoint trials. Stimuli are viewed 

passively during a fixation onset task.  

 

Representational similarity analysis 
 

Cortical representations of objects are defined with 

respect to voxel searchlights, centered at each 

location in the cortex. At each location (x,y,z), a 

pairwise representational distance matrix (RDM) is 

defined as one minus the Spearman correlation 

between the voxel responses for stimuli si and sj, or 

    Dsearchlight
x, y, z (si, sj) = 1 – r(v(si),v(sj))    (Eqn. 1) 

The vector v(si) represents the voxel responses for 

stimulus si (Leeds 2013, Kriegeskorte 2008). RDMs 

are constructed based on searchlights of radius 3 

voxels.  

 



 

Model semantic representations of objects are 

constructed for comparison with cortical 

representations. Semantic models are derived from 

each of 218 questions, spanning from diverse sensory 

and conceptual topics such as identity ("Is it a tool?") 

to component identities ("Does it have legs?") to 

size/weight ("Is it bigger than a loaf of bread?") to and 

emotion ("Is it scary?"). For each question, subjects 

provide ratings for each object on a scale from 1 to 5 

(definitely no to definitely yes) through Amazon 

Mechanical Turk (Sudre 2012). At least three subjects 

provided a rating for each object.  

 

Cortical and semantic-model representations were 

compared by converting the lower triangle of each 

corresponding 60 x 60 RDM into a 1770 x 1 vector 

and measuring Spearman correlations between the 

searchlight and model matrices.  

 

RSA permutation testing 
 

Permutation tests are further performed for each 

computed voxel searchlight-model correlation. 

Ordinarily, the values from the 1770 entries in the 

lower triangle of the distance matrix would be 

randomly permuted, preserving the frequency of each 

measured "distance", but not its place in the matrix. 

However, a randomly permuted matrix of this form will 

not guarantee fundamental distance properties, e.g., 

d(a,c) ≤ d(a,b)+ d(b,c). In the present study, we 

instead begin with the ratings of each of the sixty 

objects, considered across all 218 semantic 

questions. For each object, we randomly select a 

rating from one of the 218 questions. After all ratings 

are randomly selected, we construct a new pairwise 

distance matrix and compute the correlation at each 

voxel sphere location. The randomized distance 

matrix construction and correlation process was 

repeated 50 times. The permutation test process first 

was repeated 500 times for five selected questions; Z-

score results for 50 and 500 randomized matrices 

were found to be comparable.} After permutation 

tests are completed, Z-scores are calculated. 

Results 

We observe searchlight-model RDM correlations to be 

highest in cortical regions typically associated with 

mid-level visual perception - consistent with past 

cortical-semantic results (e.g., Sudre 2012, Devereaux 

2013). We further observe strength of searchlight-

model correlations varies based on the skew of the 

semantic model tested. High skew in representations 

are common across early and mid-level vision, while 

low-skew elsewhere in the brain is more susceptible 

to degraded cortical-model correlation with noise. We 

study these cortical statistics and their interactions 

with RSA in the sections below. 

High and Low-Skew Semantic Rankings 

We observed a connection between the statistics of a 

semantic model's distance matrix and the magnitude 

of its correlation with voxel representations. The 218 

semantic features adapted from Sudre (2012) divide in 

skew of answers --- e.g., “Is it an insect?” is a high 

skew question as most objects are not machine-like 

and a few are machines (most objects rated 1, a few 

rated higher), but “Is it found in school” is a low-skew 

question as roughly equal number of objects are hot, 

cold, and in-between (evenly rating between 1, 2, 3, 4, 

and 5; Figure 1). These skews remain when answers 

are recorded for a larger set of 1000 objects. 

 
 

Figure 1: Distribution of Mechanical Turk answers for 

five questions with skew greater than 1 (top) and less 

than 1 (bottom). 

 

We find semantic features/models with the highest 

skew answers also have higher cortical correlations 

on average; models with the lower skew have lower 

cortical correlations on average (Figure 2a). (Note: we 

measure the absolute value of the skew for each 

model.) Conversely, models with the highest 

correlations largely have the highest skews (Figure 

2b). Given the semantic diversity of stimuli, our results 

indicate a preference for single-object-category 

activation rather than a representation of a continuum 

of property scales. 
 

 



 

 

 
Figure 2: (a) Distribution of maximum cortical 

correlations for models with skew greater than 1 (top) 

and less than 1 (bottom) (b) Distribution of skews for 

models with maximum correlation greater than 0.3 

(top) and less than 0.3 (bottom)). 

 
Ignoring candidate semantic models, analysis of voxel 

searchlights across the brains of all subjects reveals 

high-skew representations in early and mid-level 

vision (shown in red for subject S1 in Figure 3) and 

lower skew representations across the rest of the 

brain (areas of no color overlay in Figure 3). While low 

skew is common across higher-level vision and non-

vision areas, correlation with low-skew semantic 

models is relatively weak.  

 
 

Figure 3: Distribution of skews greater than 0.5 

across ventral slices of brain for subject S1. 

 

Noise effects on RSA correlations 

We explore whether distance matrices from high skew 

responses may have unduly inflated correlations with 

high skew cortical data. Specifically, we select the 

sixty object ratings for a high-skew semantic model 

(“has paws?”) and a low-skew semantic model (“hard 

inside?”) as ground truths and also create 100 copies 

of the object ratings for each model perturbed by 

Gaussian noise. We generate the resulting RDMs 

(e.g., Figure 4a) and compare ground-truth matrices 

to noise matrices. We observe substantially higher 

post-noise correlations when the ground-truth 

representation has higher skew (Figure 4b). 

Intuitively, for high-skew models, the few objects with 

the unusually high (or unusually low) response will 

contribute the largest values in the distance matrix. 

Gaussian perturbations may bring high responses 

slight lower and low responses slightly higher, but the 

few “different” objects will still stand out In contrast, 

low-skew models are dominated by a wealth of 

smaller inter-object distances; enough smaller 

perturbations in these differences would lower the 

post-noise correlations. 

 

 
Figure 4: (a) Example of high-skew ground-truth and 

Gaussian-perturbed distance matrix (RDM) for sixty 

objects. (b) Distribution of correlations for noisy 

versus ground-truth representations of sixty objects 

based on high skew ground-truth object ratings (top) 

and low skew rating (bottom).. 

 

Evaluating assumptions of the permutation 

test  
 

Beyond initial correlation, we consider the 

approximated significance of model-cortical matches 

through Z scores derived by permutation testing. We 

use both permutation of pairwise distance entries and 

permutation of single-object ratings, comparing the 

resulting computed Z scores. The variance of these Z-

scores substantially increases with the magnitude of 

semantic-cortical correlations (Figure 5). Notably, a 

higher variance is found between correlation and Z-

scores when using traditional permutation testing, in 

which model matrix entries are randomly permuted 

without regard to distance matrix structure. The 

incorporation of inherent constraints on distance 

matrices produced a narrower spread of correlations 

for a given Z-score.  



 

 
Figure 5: Comparison of positive correlation values 

and Z scores computed based on random 

permutation of object scores (top) and on random 

permutations on entries of distance matrix (bottom). 

Correlation-Z score spreads shown for two high-

correlation semantic features. Constructing distance 

matrices after permuting object scores results in 

tighter distribution of Z scores across voxel with a 

given model correlation. 

Discussion 

Representational similarity analysis study of candidate 

semantic models underlying visual object perception 

shows a preference for multiple skewed groupings of 

a semantically diverse set of sixty objects in early to 

mid-level visual regions. Our results indicate a cortical 

preference for single object categories in early to mid-

level vision. Semantic representations in additional 

cortical regions do not appear to be as strongly 

modeled by the simple single-question models 

adapted we adapted from Sudre (2012). 

Additional study on the statistics of distance matrices 

indicates a possible “unfair advantage” for skewed 

distributions during RSA model comparisons, which 

may affect the results of our study as well as other 

ongoing studies. Skewed distributions show greater 

robustness to Gaussian noise, commonly expected 

while studying neuroimaging data. Significance 

analysis of distance matrix correlations also may be 

inflated or deflated without proper consideration of 

matrix statistics during the popular permutation test 

approach.  

Our work stresses the importance of carefully framing 

future analyses to properly incorporate RSA’s 

sensitivity to model statistics and to intrinsic distance 

matrix structure. 
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