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Abstract
A primary aim of computational neuroscience is to pro-
duce models of human behavior that meaningfully ad-
dress population-level variability. Previous approaches
to strategic interaction have used games with clearly-
defined turns and limited choices, since these problems
are amenable to tractable mathematical analysis. How-
ever, most real-world decisions are dynamic, involving si-
multaneous, coevolving decisions by each agent. Here,
using a competitive game in which participants control
the dynamics of an on-screen avatar against either an-
other human or a computer opponent, we show that it
is possible to quantify this dynamic coupling between
agents. Despite the complexity of this behavior, modern
nonparametric modeling methods can address the chal-
lenges posed by high-dimensional decision problems.
We used Gaussian Processes to model the joint distri-
butions of players’ actions and identities (human or com-
puter) as a function of game state. We show that this ap-
proach offers a natural set of metrics for quantifying in-
stantaneous strategies, and that these metrics are linked
to the models hyperparameters. Moreover, because op-
ponent identity is part of the joint distribution, we can dif-
ferentiate between effects due to opponent identity and
effects due to game context. Our approach facilitates
analysis at multiple timescales and suggests new classes
of tractable paradigms for assessing human behavior.
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Introduction
Over the last fifteen years, game theory has been founda-
tional in establishing a neuroscience of strategic decision
making (Camerer, 2011). Paradigms like Matching Pen-
nies, the Trust/Ultimatum Game, and Prisoner’s Dilemma have
used simple choices in highly standardized contexts to rig-
orously characterize the psychological processes underlying

trust, altruism, and inequity aversion, drawing on a vast liter-
ature detailing mathematically normative behavior (Camerer,
2011; Delgado, Frank, & Phelps, 2005; Mookherjee & So-
pher, 1994). Yet many of the strengths of these paradigms—
discrete choices, turn-taking, known payouts—run counter to
our experience in real-world actions like negotiation, in which
participants respond to one another in real-time, their strate-
gies coevolving amid ambiguously defined incentives.

Our interest lies in quantifying individual differences in this
dynamic interplay. To this end, we created a competitive task
in which experimental subjects played against both a human
opponent and a computer opponent in a real-time movement-
based game. As we show, though the task generated a rich
complexity in individuals’ behavior, this complexity can be par-
simoniously captured and analyzed through the use of non-
parametric modeling methods. An additional benefit of these
methods is that they lead to a natural quantification of the
moment-by-moment coupling between players, as well as a
characterization of individual differences in terms of model hy-
perparameters. We are able to examine these metrics over
a hierarchy of time scales: moment-by-moment, across tri-
als, and across subjects. Furthermore, we can decompose
the variance of these metrics across levels, offering a charac-
terization of each as more or less trait-like or state-like. We
find that metrics related to a player’s sensitivity to opponent
exhibit more across-subject variance compared to other vari-
ables characterizing game state, while metrics pertaining to
the shooter’s own play result in more within-trial variance.

Experimental Paradigm

We adapted a zero-sum dynamic control task (Iqbal & Pear-
son, 2017; Iqbal et al., n.d.), inspired by a penalty shot in
hockey, for compatibility in an fMRI scanner, see Figure 1.
The task involved two players: an experimental participant
(n = 82) who controlled an on-screen circle (the “puck”) and
another agent who controlled an on-screen bar (the “goalie”).



Both players were able to move their avatars using a joystick,
see Figure 1B. The participant controlling the puck attempted
to cross a goal line located at the right end of the screen,
while the goalie attempted to block the puck. On half of the
trials, the experimental participant played against a human.
On the other half of trials, the participant played against a
computer-controlled goalie. The identity of the goalie oppo-
nent (i.e. human or computer goalie) was randomly selected
each trial and was disclosed to the participant before each
trial began. Our task was incentive-compatible: both the ex-
perimental participant and the human goalie were rewarded in
monetary bonuses based on how frequently each player won.
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Figure 1: A: Task timeline of each trial. B: Game play on a
single trial. The puck moves forward in time from left to right
at constant horizontal velocity. The goalie was only allowed
to move vertically but is depicted as moving inward toward
the goal line over time. C: All trajectories for a representa-
tive subject. Trials played against the human goalie are blue.
Trials against the computer are green. D: Decomposition of
variance for player metrics. Total variance in any quantity de-
fined on a moment-by-moment basis can be decomposed into
within-trial, across-trial, and across-subject variance, which
must add to 1. All potential metrics thus live within the triangle
shown. Metrics that capture only fleeting behaviors lie inside
the purple region; those reflecting trial-to-trial adjustments in
strategy in green; and those stable within subjects in orange.

Predicting Change Points

As expected, subjects exhibited considerable variability in
game play (Figure 1C). Despite the fact that participants could
produce smooth motions by controlling the vertical velocity of
the puck, we observed that most trials could be approximated

as a sequence of maximal velocity segments separated by
change-points, which we defined as either an initial change
of the vertical velocity away from 0 or a subsequent change
in the sign of vertical velocity. We thus chose to approximate
each trial as defined by the set of such change points. In this
approximation, a player’s strategy could be fully characterized
by the probability of a change point at each moment. Data for
our player modeling thus consisted of a binary label for each
moment in every trial (1 when a change point occurred at the
next time point, 0 for all other points), as well as a set of input
features characterizing the current state of the game: the po-
sition and velocity of each player, the identity of the opponent
(1=human, 0=computer), the number of time points that have
passed since the last change point, and an opponent-specific
experience variable reflecting where in the progression of the
task each time point occurred. Our goal was to predict the
binary labels from these input variables.

Our model selection was guided by three requirements:
First, the model should be flexible enough to capture the rich
diversity of player behavior. Second, the model should appro-
priately handle the sparse number of change-points (≈ 4.6%)
with an input space of moderate dimension. And third, the
model should avoid overfitting while providing a principled es-
timate of uncertainty. For these reasons, we fit each subject’s
data using a Gaussian Process (GP) classification approach.
Briefly, a Gaussian Process (GP) is a distribution over func-
tions. In the same way that a sample from a normal distribu-
tion is a real number and a sample from a Bernoulli distribution
is a binary variable, a sample from a GP is an entire function
(e.g., a time course or spatial density). Gaussian processes
have the advantage of providing a principled, Bayesian mea-
sure of uncertainty over functions while remaining resistant
to overfitting and generalizing to unseen data (Rasmussen &
Williams, 2006). GPs are widely used in spatial and time se-
ries modeling for their combination of flexibility and ability to
generalize from even modest data (Gelfand, Diggle, Guttorp,
& Fuentes, 2010; Rasmussen & Williams, 2006). As with its
finite-dimensional analog, the multivariate Gaussian distribu-
tion, a GP is fully defined by its mean (which we take to be
0 in the prior) and the parameters of its covariance function.
GP models offer the benefits of a Bayesian approach: resis-
tance to overfitting, modeling of the data distribution, and a
principled estimate of uncertainty. Thus, GPs offer compet-
itive modeling performance coupled with uncertainty estima-
tion and differentiability, both of which we leverage in our sen-
sitivity analyses.

In our case, following standard techniques (Hensman,
Matthews, & Ghahramani, 2015; Rasmussen & Williams,
2006), the GP parameterized a quantity analogous to the log
odds of a change-point at each game configuration:

z∼ Bernoulli(π(s,ω)) (1)

Φ
−1(π(s,ω))≡ f (s,ω)∼ GP (0,k) (2)

where s is the vector of variables defining the game state,
ω ∈ {0,1} is a binary indicating opponent identity, Φ−1 is the



inverse cumulative normal distribution (also called the probit
function), and GP (0,k) is a GP prior on f with mean 0 and
kernel function k. Because we assume that f is a smooth
function of its inputs, we choose the common radial basis
function (RBF) kernel (Rasmussen & Williams, 2006):

k(x,x′) = σ
2 exp

(
∑
i=1

(xi− x′i)
2

λ2
i

)
(3)

with σ and λ tunable parameters setting the overall magnitude
of the covariance and the length scale of correlations along
each input dimension, respectively. Here, x includes both s
and ω. Even though ω is a discrete parameter, we approxi-
mate it as a continuous variable, as is often done in Bayesian
optimization using GPs (Snoek, Larochelle, & Adams, 2012).

We found that our GP classification model accurately cap-
tured the diverse patterns present in subjects’ data (Figure 2).
That is, the model increased its predicted probability of a
change point in regions of space where change points oc-
curred in the data. This is a direct result both of the non-
parametric nature of the GP—the model adapts its complexity
to the data—as well as the smoothing effects of the prior. The
underlying GP, f (s,ω) captures in a smooth function the pol-
icy of the shooter in response to both game state and goalie
identity. Figure 3A illustrates this contrast by plotting the av-
erage (across trials) likelihood of a change point as a function
of time in trial for a single subject. For this individual, change-
points are likeliest early, with a rise during mid-trial, and a very
low value near trial end, consistent with a strategy of commit-
ting fully to a direction (up or down) late in the trial. Nonethe-
less, the subject’s average change point probabilities evince
minimal difference when playing against a human or computer
goalie.

A BReal Data Model Prediction

Figure 2: A: Observed data from one subject in the penalty
shot task. Trials in which this subject played against the hu-
man goalie are colored in blue; trials against the computer
goalie are colored in green. The overlaid black points repre-
sent change-points (i.e., moments when the subject changed
direction). B: Same trajectories from A, this time overlaid with
contours illustrating regions in which the odds of a change
point increased above the subject’s average. The contours are
small, indicating a complex policy with numerous local max-
ima.
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Figure 3: A: Probability of a change point as a function of time
for a single subject, averaged across trials. The average for
trials played against the human goalie is in blue, against the
computer goalie in green. B: The same subject’s sensitivity to
opponent actions, averaged across time. In both plots, shaded
regions represent posterior credible intervals. Whereas the
policy does not differ based on opponent, local gradients of the
policy, indicative of sensitivity to game state, reveal differences
between goalies.

Sensitivity Metric
Though we observed negligible differences in average change
point probability between opponents, we hypothesized that
these averages might be obscuring important features of the
policy, and that subjects might exhibit differential sensitivity to
the goalie. To investigate this, we used gradients of the under-
lying Gaussian Process to define a sensitivity metric for each
input variable at each moment in the trial. Because the gra-
dients of the GP measure the degree to which small changes
in the current game state affect the shooter’s probability of
changing course, gradients with respect to the goalie’s posi-
tion and velocity capture the degree to which the shooter’s
current behavior is sensitive to the goalie’s. For each input
variable, we defined a sensitivity as the squared norm of the
gradient of the GP along that direction: νi = ‖η−1

i ∇i f‖2, with
i = 1 . . .8 indexing (s,ω), ∇i the gradient with respect to the
ith variable, and η

−1
i representing the ith diagonal of the pos-

terior covariance of ∇ f . Further, to capture overall sensitivity
of the puck to the goalie’s actions, we combined the sensitivi-
ties to goalie position and velocity into a single metric:

ς = ‖L−1
∇x̃ f (x)‖2 (4)

with x̃ ≡ (ygoalie,vgoalie) and L the Cholesky factor (Σ = L>L)
of the covariance (Σ) of ∇x̃ f . We hypothesized that even
when averaged policies were similar, these metrics might dif-
fer when subjects played against each opponent.

And indeed, sensitivity to opponent actions varied widely
throughout the trial (Figure 3B). Moreover, the difference in
sensitivity to the goalie’s actions between human and com-
puter opponents was significantly higher in those participants
who reported the human opponent as requiring more atten-
tion than the computer (Mann-Whitney U = 510.0, p = 0.011).
Taken together, these results suggest that coarse averages of
change point probabilities fail to capture the key differences in



subjects’ play against the two types of opponents. Rather, it is
the local structure of the strategies, as measured by gradients,
that differs at temporally localized periods within each trial.

Decomposing complex behavior across timescales
We have demonstrated that our GP modeling approach natu-
rally provides a measure of sensitivity to each predictor vari-
able at every time point. Yet complex social decisions are or-
ganized over a hierarchy of time scales. With this in mind, and
spurred by the results of the previous section, we next asked
how sensitivity varied as our instantaneous metrics were ag-
gregated over increasingly coarse timescales. Just like with
ANOVA, we can decompose variance by averaging at dif-
ferent timescales and looking at how the data vary around
those means. Figure 4 illustrates this decomposition for both
the instantaneous probability of switching (as measured by
f (s,ω)) and the sensitivity to each input variable. Here, as
in Figure1D, each point represents sensitivity to a single input
variable in the model, with the location of the point represents
the proportion of variance allocated to the within-trial, across-
trial, and across-subject levels, with the sum of the three con-
strained to be 1. Two results immediately stand out: First, no
points appear in the lower-right corner, indicating that none
of the metrics exhibited unique variance across trials. This
suggests that, unlike repeated games, strategy did not mean-
ingfully vary across trials; rather, strategies consisted of a set
of complex dynamics to be implemented within trial. Second,
those sensitivities exhibiting higher levels of stability across
subjects (near the pinnacle of the triangle) were variables cap-
turing subjects’ sensitivity to the goalie’s actions, not their own.
In other words, subjects’ couplings to their opponents was rel-
atively more “trait-like”. For instance, sensitivity to the goalie’s
position exhibited the majority of its variance (61.9%) across
subjects, suggesting that the degree to which players attend
and react to the goalie’s movements is relatively static within
an individual but meaningfully variable across the population.

These results demonstrate the power of nonparametric
methods for both modeling and analyzing complex strategic
interactions. Our experimental paradigm extends previous ap-
proaches to decision-making by incorporating simultaneous
movement and coupling between agents, and our model al-
lows us to quantify strategies on a moment-by-moment basis,
facilitating analysis at multiple time scales. This is particularly
valuable for studying the neuroscientific basis of such behav-
iors, since complementary methods like fMRI and EEG oper-
ate on radically different time scales; our model makes predic-
tions applicable to both. Approaches like ours thus open new
possibilities for the study of behaviors like competition and so-
cial interaction that have remained resistant to neuroscientific
investigation.
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Figure 4: Variance decomposition of player metrics. When
within-trial, across-trial, and across-subject variances for a
metric are normalized by total variance they must sum to 1,
corresponding to a point inside the triangle. Each point thus
represents sensitivity to a single input variable in the model,
with the location of the point representing the proportion of
variance allocated to the within-trial, across-trial, and across-
subject levels. The variables that are relatively more trait-
like (nearer the pinnacle) represent sensitivity to the oppo-
nent (goalie y-position, opponent identity, opponent experi-
ence, and goalie y-velocity).
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