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Linear encoding models constructed to explain hu-
man cortical responses to speech have the poten-
tial to provide insights into the mechanisms of 
speech comprehension. It has been shown that 
combining annotated linguistic features with 
acoustic features of the speech signal can consist-
ently improve the prediction of brain responses. 
Here we aim to replicate these effects in source-
level magnetoencephalography (MEG) data to ask 
if the contribution made by linguistic features 
could be explained by more comprehensive mod-
els considering acoustic features only. We thus 
compare the predictive performance of several 
acoustic feature spaces of varying dimensionality 
with that of an annotated linguistic feature space. 
While we replicate the effect of increased perfor-
mance when combining annotated features with 
spectrograms over spectrograms alone, we also 
obtain similar increases with Gabor-filtered spec-
trograms and even stronger increases with the 
combination of spectrograms and their temporal 
gradients. We then find that the predictions of this 
best acoustic model are highly redundant with 
those of the annotated feature space. We conclude 
that annotated feature spaces are a great as bench-
marks. However, we stress that for the understand-
ing of the computations underlying cortical re-
sponses to speech, models specifying transfor-
mations of the acoustic input are necessary. 
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Introduction 
Explaining dynamic neuronal responses to speech via 
linear models considering various nonlinear transfor-
mations of the stimuli as features has recently led to 
fascinating hypotheses about the involved brain re-
gions, temporal dynamics and computations (Di Liberto, 
O’Sullivan & Lalor, 2015; de Heer, Huth, Griffiths, Gal-
lant & Theunissen, 2017). The underlying rationale is 

that insights about the locus and dynamics of the bio-
logical implementation of the computations involved 
can be gained from spatiotemporal maps of weights and 
predictive power, while the architectures of the nonlin-
ear transformations are thought to shed light on the 
computations themselves. The employed feature 
spaces are then chosen to cover a hypothesized hier-
archy, allowing dissociable descriptions of early, acous-
tically driven and later, more abstract processing 
stages. 

A compelling finding obtained with this strategy is that 
cortical responses as measured by electroencephalog-
raphy (EEG, Di Liberto, O’Sullivan & Lalor, 2015) or cer-
tain regions as measured with functional magnetic res-
onance imaging (fMRI, de Heer et al, 2017) are best 
predicted with so-called articulatory or phonemic fea-
ture spaces. They are linguistically motivated and re-
quire a labelling and temporal alignment of a separate 
transcript of the text and the acoustical stimulus wave-
form. In this way, they aim to capture an intermediate 
stage of processing between low-level acoustic stimu-
lus properties and high-level semantic meaning. This 
opens up the avenue of assessing if there are feature 
spaces based on acoustic models which can explain 
this advantage in prediction performance. Doing so 
could further elucidate to what degree the phenomenon 
is a signature of an invariant processing stage related 
to acquired, internal knowledge of a language or more 
simply a reflection of bottom up encoding of physical 
properties of the stimulus. 

Using source-level MEG data, we here consider a 
range of pre-existing acoustical feature spaces and 
evaluate their predictive performances relative to the 
current state of the art in the literature:  a model based 
on both spectrograms and articulatory features (Di 
Liberto, O’Sullivan & Lalor, 2015). To then elucidate 
what acoustical properties could underlie the perfor-
mance boost of the annotated features, we assess to 
what degree the predictions of acoustical models share 
information about observed recordings with predictions 
of the annotated model. 

 



Methods 
21 healthy young participants (native speakers of Eng-
lish, 12 female, mean age 24.05 years, age range 18 – 
35 years) listened to a narrative of 55 minutes duration 
(“The Curious Case of Benjamin Button”, public domain 
recording by Don W. Jenkins, librivox.org) while their 
brain activity was recorded with a 248 channel magne-
tometer MEG system (MAGNES 3600 WH, 4D Neu-
roimaging). The session was split into 6 blocks of equal 
duration and additionally included the repetition of the 
last block. Preprocessing was done using the fieldTrip 
toolbox (Oostenveld, Fries, Maris & Schoffelen, 2011). 
We manually removed and subsequently interpolated 
artefactual channels, replaced squid jumps with DC 
patches, filtered the signal with a fourth-order zero-
phase butterworth high-pass filter with a cutoff-fre-
quency of .5 Hz and downsampled the data to 125 Hz. 
We then performed ICA to identify and remove compo-
nents reflecting eye and heart activity and further 
downsampled the data to 40 Hz. Next, we generated 
corrected-sphere volume conductor models from indi-
vidual anatomical MRI scans and computed spatial fil-
ters for a grid of points in source space of 5 mm resolu-
tion using the LCMV beamformer algorithm with 5% 
regularisation. We correlated the response to the last 
block with that from its repetition to identify story-re-
sponsive regions in source space (de Heer et al, 2017). 

The speech stimulus was then transformed into vari-
ous feature spaces. We used the GBFB toolbox 
(Schädler, Meyer & Kollmeier, 2012) to obtain 31-chan-
nel Log-Mel-Spectrograms (“LMS”) and summed these 
across the spectral dimension to also obtain the ampli-
tude envelope (“Env”). Additionally, we filtered the 
spectrograms with 455 2D Gabor filters of varying cen-
tre frequencies as well as spectral and temporal modu-
lation frequencies (“GBFB”). As a last acoustic feature 
space, we computed half-wave rectified first derivatives 
of the envelope and spectrogram feature spaces 
(“ReDe(Env)” and ”ReDe(LMS)”, Hertich, Dietrich, 
Trouvain, Moos & Ackermann, 2012). To construct an-
notated feature spaces, we used the Penn Phonetics 
Lab Forced Aligner (Yuan & Liberman, 2008) to align 
the text material to the stimulus waveforms, providing 
us with onset times of phonemes comprising the text. 
These were manually corrected using Praat (Boersma, 
2001) and subsequently transformed into a 23-dimen-
sional binary articulatory feature space (“Art”, de Heer 
et al, 2017). Finally, we discarded the information about 
phoneme identity to obtain a one-dimensional binary 
feature space of phoneme onsets (“Art1D”). 

We used these seven feature spaces in the following 
combinations: Env, ReDe(Env), LMS, 
LMS+ReDe(LMS), LMS+GBFB, LMS+Art1D, LMS+Art. 

To perform a linear mapping from our feature spaces 
to the recorded MEG signals, we used ridge regression 
(Crosse, Di Liberto, Bednar & Lalor, 2016) in a 5-fold 
nested cross-validation framework (Varoquaux, Raa-
mana, Engeman, Hoyos-Idrobo, Schwartz, & Thirion, 
2017). This allowed us to tune hyperparameters con-
trolling the temporal extent and the amount of L2 regu-
larisation of the ridge models in the inner folds, yielding 
optimised models for each considered grid point. For 
the joint feature spaces consisting of multiple sub-
spaces, the temporal extent and L2 regularisation was 
optimised individually for each subspace to obtain the 
best possible prediction performance. Bayesian Adap-
tive Direct Search (Acerbi & Ma, 2017), a recent black-
box optimisation algorithm, was used to efficiently sam-
ple the multidimensional hyperparameter space. 

To evaluate the model performances for each outer 
fold of the 21 participants and focus on the differences 
between the feature spaces, we used a Bayesian hier-
archical linear model with random effects for partici-
pants and fixed effects for folds, hemispheres and fea-
ture spaces (Bürkner, 2017), allowing us to assess pos-
terior distributions of the beta estimates of the categor-
ical variable feature space. 

Finally, to assess the amount of redundancy and 
unique information each acoustical feature space had 
with the annotated feature space about the observed 
MEG time series, we used Partial Information Decom-
position (PID) based on common change in surprisal 
(Ince, 2017) within each fold of each participant.  

 

Results 

Correlations of repeated chapters peak in bi-
lateral auditory cortices 
 

 
Figure 1: Grand average of correlations of brain activ-
ity of the last block and its repetition. 
 
To identify grid points where MEG responses were re-
producibly activated by the stimulus, we correlated the 
responses to one chapter with the responses to its rep-
etition in source space  (de Heer et al, 2017). These cor-
relations peaked in regions well in accordance with typ-
ical localisations of bilateral auditory cortices (AC, Fig-
ure 1). We focussed the following analyses on the grid 
point of peak correlation within each hemisphere. 
 



Performance boost over spectrograms with 
annotated features, but also with acoustic fea-
tures 
 

 
Figure 2: Top: Raw test set performances in left and 
right AC. Each colour is one participant, each dot is 
one outer fold. Bottom: Draws from posterior distribu-
tion of beta estimates for fixed effects of feature 
spaces relative to baseline feature space envelope. 
  
The performances of our models exhibited relatively 
large inter-participant variability and comparatively 
small variability across feature spaces (Figure 2, top). 
To focus on our main interest of systematic differences 
across feature spaces, we used Bayesian hierarchical 
linear modelling and extracted the betas of fixed effects 
for the feature spaces (Figure 2, bottom). 

We replicated previous results demonstrating an in-
crease in prediction performance when combining lin-
guistically motivated annotated articulatory features 
with spectrograms (red)  . When we discarded the pho-
neme identity and thereby reduced the annotated fea-
tures to phoneme onsets (pink), we obtained compara-
ble performances. We also obtained comparable per-
formances with a combination of spectrograms and Ga-
bor-filtered spectrograms (yellow)  . Finally, we achieved 
the best prediction performances when we instead 
combined the spectrograms with their temporal gradi-
ents (turquoise). These results raised the question 
whether the acoustic features explain the same or dif-
ferent aspects of the responses as the annotated fea-
tures. 
 

Performance boosts of annotated features are 
highly redundant with those of a combination 
of spectrograms and their temporal gradient   
PID (Ince, 2017) aims to disentangle redundant, unique 
and synergistic contributions of two source- about a tar-
get   variable. We used the outer fold predicted MEG sig-
nal from two different models as the two source varia-
bles, and the corresponding recorded MEG signal as 
the target variable. This analysis therefore revealed 
how much the two feature spaces predicted the same 
parts of the MEG signal (Redundancy), and how much 
each predicted distinct from the other (unique Infor-
mation). We fixed LMS+Art as one source, and consid-
ered the PID for the different acoustic feature spaces 
(Figure 3). We observed a gain in Redundancy of the 
multi-dimensional feature spaces such as LMS or 
LMS+GBFB over the one-dimensional Env or 
ReDe(Env). The highest Redundancy was achieved by 
the LMS+ReDe(LMS), reaching almost 100% (normal-
ised by the information of the prediction from LMS+Art 
about the observed MEG). Furthermore, we observed a 
reduction in unique Information of LMS+Art going from 
the one-dimensional to the multi-dimensional acoustic 
feature spaces. For LMS+ReDe(LMS), we even ob-
served slightly more unique Information of the acousti-
cal feature space than of the annotated feature space, 
whose unique information was distributed around zero. 
On a group level, these patterns were highly similar be-
tween left and right ACs. 
 

 
Figure 3:  PID with predictions of annotated vs other 
feature spaces as sources and observed MEG as tar-
get for left and right AC; values normalised by MI of 
prediction of annotated features about observed MEG; 
each dot is one outer fold of one participant. Top: Re-
dundancy; Bottom: Unique Information 
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Conclusion 
We found that a model based on acoustic features 

resulted in better prediction performance of MEG re-
sponses than the current state-of-the-art model based 
on annotated linguistic features. Furthermore, we found 
that predictions based on the acoustic feature space 
were highly redundant with those of the linguistic fea-
ture space. The amount of unique information was prac-
tically zero for the annotated feature space, but weakly 
positive for the acoustic feature space. This means that 
both models are providing the same prediction in the 
same time points. In combination, these results show 
that what has been interpreted as a signature of pre-
lexical abstraction in low-frequency EEG data is repli-
cable in source level MEG data but can be explained 
with relatively simple spectrotemporal dynamics. 

To let our models adapt optimally to different signal 
characteristics such as signal-to-noise-ratio at different 
grid points, we allowed the hyperparameters to be opti-
mised individually at each grid point. Even for our rela-
tively simple linear models, this was a computationally 
intensive procedure which prevented us from modelling 
broader regions in source space. While we assume that 
the nested cross-validation framework chosen here 
safeguarded us against overfitting, the results we pre-
sent here are currently restricted to the grid points of 
peak retest-correlations. These are possibly biased to-
wards low-level processing since our participants might 
not have paid the same degree of attention to the repe-
tition. However, an inspection of cross-talk- and point 
spread functions of our spatial filters suggested that the 
grid points chosen here capture a large part of the ac-
tivity stemming from bilateral superior temporal gyri.  

Our results underscore that annotated linguistic fea-
ture spaces are useful tools to explore neuronal re-
sponses to speech and serve as excellent benchmarks. 
Their performance for explaining neuronal responses of 
high temporal resolution was exceeded by an acoustic 
feature space that has been shown to increase the ro-
bustness of automatic speech recognition systems to 
noise and reverberation (Kumar, Kanwoo & Stern, 
2011). This suggests that during listening to speech, ac-
tivity in ACs is mainly structured by non-stationarities in 
the speech signal,  reflecting the importance of rapid 
power changes which characterise this part of our sen-
sory environment. 
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