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Abstract
Progress in deep learning has spawned great successes
in many engineering applications. As a prime exam-
ple, convolutional neural networks, a type of feedforward
neural networks, are now approaching – and sometimes
even surpassing – human accuracy on a variety of vi-
sual recognition tasks. Here, however, we show that
these neural networks and their recent extensions strug-
gle in recognition tasks where co-dependent visual fea-
tures must be detected over long spatial ranges. We intro-
duce the horizontal gated-recurrent unit (hGRU) to learn
intrinsic horizontal connections – both within and across
feature columns. We demonstrate that a single hGRU
layer matches or outperforms all tested feedforward hier-
archical baselines including state-of-the-art architectures
which have orders of magnitude more free parameters.
We further discuss the biological plausibility of the hGRU
in comparison to anatomical data from the visual cortex
as well as human behavioral data on a classic contour
detection task.
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Consider the images in Fig. 1a: A sample image from the
Berkeley Segmentation Data Set (BSDS500) is shown on top
and the corresponding contour map produced by a state-of-
the-art deep convolutional neural network (CNN) (Lee et al.,
2015) underneath it. Although this task has long been con-
sidered challenging because of the need to integrate global
contextual information with inherently ambiguous local edge
information, CNNs now rival humans at detecting contours
in natural scenes. Now, consider the image in Fig. 1b,
which depicts a variant of a visual psychology task called
“Pathfinder” (Houtkamp & Roelfsema, 2010). Reminiscent of
the everyday task of reading a subway map to plan a commute
(Fig. 1c), the goal of Pathfinder is to determine if two white cir-
cles in an image are connected by a path. Compared to nat-
ural images such as the one shown in Fig. 1a, these images
are visually simple, and the task is indeed easy for human
observers to solve (Houtkamp & Roelfsema, 2010). Nonethe-
less, as detailed below, we find that modern CNNs struggle
to solve this task. Why is it that a CNN can accurately detect
contours in a natural scene like Fig. 1a but also struggle to in-
tegrate paths in the stimuli shown in Fig. 1b? In principle, the

(a) (b)

START

GOAL(c)(a) (b)

START

GOAL(c)

(a) (b)

START

GOAL(c)(a) (b)

START

GOAL(c)

(a) (b)

START

GOAL(c)

Figure 1: State-of-the-art CNNs excel at natural image con-
tour detection benchmarks, but are strained by a task that de-
pends on detecting long-range spatial dependencies. (a) Rep-
resentative contour detection performance of a leading model.
(b) Exemplars from the Pathfinder challenge: a task consist-
ing of synthetic images which are parametrically controlled for
long-range dependencies. (c) Long-range dependencies simi-
lar to those in the Pathfinder challenge are critical for everyday
behaviors, such as reading a subway map to navigate a city.

ability of CNNs to learn such long-range spatial dependencies
is limited by their localized receptive fields (RFs). This is typi-
cally addressed by building deeper networks, which increases
the size and complexity of network RFs.

An alternative solution to problems that stress long-range
spatial dependencies is provided by biology. The visual cor-
tex contains abundant horizontal connections which mediate
nonlinear interactions between neurons across distal regions
of the visual field (Field et al., 1993). These intrinsic connec-
tions, popularly called “association fields”, are thought to form
the main substrate for mechanisms of contour grouping ac-
cording to Gestalt principles, by mutually exciting colinear el-
ements while also suppressing clutter elements that do not
form an extended contour (Field et al., 1993). Such “extra-
classical receptive field” mechanisms, mediated by horizontal
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Figure 2: The hGRU efficiently learns long-range spatial de-
pendencies that otherwise strain feedforward architectures.
Its nearest competing feedforward models need at least
200× its number of parameters to match its performance on
Pathfinder tasks. The x-axis shows the number of parameters
in each model versus the hGRU (as a multiple of the latter).
The y-axis depicts model accuracy on a version of Pathfinder
featuring paths made up of 14 paddles (see 1b for examples).

connections, allow receptive fields to adaptively “grow” with-
out additional processing depth. Several computational neu-
roscience models of these neural circuits have been proposed
to account for an array of phenomena from perceptual group-
ing to contextual illusions (e.g., Mely & Serre, 2016). How-
ever, because these models are fit to data by solving sets of
differential equations using numerical integration, they have
so far not been amenable to computer vision. We implement
the core ideas of these models in an end-to-end trainable ex-
tension of the popular gated recurrent unit (GRU) (Cho et al.,
2014), which we call the horizontal GRU (hGRU).

We compared feedforward and recurrent approaches to
capturing long-range spatial dependencies in a large-scale
analysis of model performance on Pathfinder. This revealed
a striking trend: feedforward models struggle at solving
pathfinder, with only state-of-the-art feedforward models fea-
turing millions of parameters across many processing layers
succeeding (Fig. 2). An hGRU, on the other hand, efficiently
solves Pathfinder with just one layer and a fraction of the num-
ber of parameters and training samples as feedforward mod-
els. The hGRU also outperforms all other tested recurrent
models, including versions with lesions to its various mech-
anisms (such as linear nonlinear forms of excitation and in-
hibition), versions with less processing time, and a standard
convolutional GRU (Fig. 2; yellow and brown dots).

We further investigated the nature of the horizontal connec-
tions learned by the hGRU by training it for contour detection
in natural images (BSDS500 dataset). The learned kernels
capture many of the canonical horizontal connectivity patterns
found in cortex, including antagonistic near-excitatory vs. far-
inhibitory surrounds, and the association field. We additionally
find that fine-tuning this natural-image trained hGRU to a con-
tour detection task yields a pattern of behavior in response to
manipulations of contour salience that strongly correlates with
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Figure 3: The hGRU learns horizontal connections that re-
semble cortical patterns of connectivity. Processed kernels
from the hGRU depict polar center-surround interactions and
association fields.

human observers (Li & Gilbert, 2002).
This work diagnoses a computational deficiency of feed-

forward networks, and introduces a biologically-inspired so-
lution that can be easily incorporated into existing deep learn-
ing architectures. Beyond its effectiveness in computer vision,
the weights learned by the hGRU and its corresponding be-
haviors are consistent with those associated with visual cor-
tex, demonstrating its potential for establishing novel connec-
tions between machine learning, cognitive science, and neu-
roscience.
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