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Abstract: 
Many complex behaviors consist of sequentially 

ordered actions. When acquiring a novel 

sequential skill, the transition between actions 

can be performed with increasing speed. This 

observation has led to the idea that the 

elementary actions are bound together during 

the learning process. Two ideas for this process 

have been proposed: First, statistical 

probabilities between different elementary 

actions could be acquired. Secondly, discrete 

groupings of elementary actions – so-called 

chunks - could emerge with learning. We discuss 

the differences between these two ideas and 

compare the ability of the two models to predict 

inter-press time intervals (IPIs) measured by a 

discrete sequence production task. We find a 

greater ability of the chunk model to predict 

participants’ IPIs throughout learning. 
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Introduction 
Serially ordered actions are an important 

component of human behaviour from typing 

emails to more complex actions like cooking. 

Most of the behaviours that we perform are 

divided into smaller parts that combined make 

up a complete action sequence. When 

performing a novel behavior for the first time 

each of the serially ordered actions is performed 

slowly and with care, however, with repeated 

executions, the transitions become increasingly 

faster. What kind of process could predict these 

changes in transition speed and are some 

actions more likely to be bound together? 

Two main theories have been used to explain 

this idea of action binding. Proponents of the 

statistical learning theory propose that the 

motor system learns the relative frequency of 

co-occurrences of actions (transition 

probabilities; for a review see Perruchet & 

Pacton, 2006), making more frequent 

transitions faster. When writing an email, 

statistical learning would predict that letters that 

co-occur more frequently in our language, and 

hence have been performed more often in 

combination, would likely be executed faster. 

 

Another process that has been suggested to 

play a role in action binding is “chunking” 

(Boucher & Dienes, 2003; Perruchet & Pacton, 

2006; Perruchet & Vinter, 1998). With our 

limited working memory capacity executing a 

long sequence of actions might not be possible 

at the beginning of learning  (Miller, 1956). To 

overcome this limitation, long sequences are 

subdivided into groups of actions - so-called 

chunks. Chunking is said to aid skill acquisition 



by decreasing cognitive load (Acuna et al., 

2014; Ramkumar et al., 2016; Verwey & 

Dronkert, 1996). The interplay between the 

emergence of chunks and the learning of 

transitional probabilities has been under debate 

without a clear consensus (Boucher & Dienes, 

2003; Du & Clark, 2017; Perruchet & Pacton, 

2006; Perruchet & Vinter, 1998). Different 

hypotheses have been proposed: First, 

statistical learning influences transition speed in 

the early stages of learning and can lead to the 

formation of chunks as learning consolidates 

(Beukema & Verstynen, 2018; Nissen & 

Bullemer, 1987). Alternatively, chunking could 

also occur at the earliest stages of learning and 

influences learning to a greater extent than 

statistical probabilities (Acuna et al., 2014; 

Ramkumar et al., 2016). Third, statistical 

learning and chunking could be mutually 

exclusive processes, with the system adopting 

one or the other depending on context 

(Meulemans & Van Der Linden, 2003). 

 

To distinguish the amount of influence on 

performance between chunks and transition 

probabilities in a motor sequence task, we first 

need to establish the differences between the 

two concepts (see Fig. 1). Let’s take the 

sequence 51312315134 to exemplify the 

differences in predicted performance between 

transitions probabilities and chunks. Because 

51, 13 and 31 occur 2 times in the sequence, 

statistical learning would predict that these 1st 

order transitions are executed faster than a 1st 

order transitions that only occurs once such as 

12. The same goes for the 2nd order transition 

513 which is repeated twice and hence should 

be performed faster. On the contrary, chunking 

is believed to be a winner-take-all process 

(Servan-Schreiber & Anderson, 1990). In our 

example, the sequence is arbitrarily chunked as 

513, 123, 151 and 34. There are 1023 different 

ways to chunk the sequence; however, with our 

paradigm we were able to instruct the chunk 

structure that participants followed early in 

learning. In this example, 513 is chunked and 

hence the transitions between these presses 

should be fast. However, while this sequence of 

presses reoccurs later in the sequence, this later 

part might be chunked differently – e.g., as 151 

and 34. This leads to a slow transition between 

1 and 3 at the end of the sequence. In sum, 

chunks are supposed to be discrete and a 

winner-take-all process which does not benefit 

or generalize to the frequency of presentation 

and hence could lead to slow transitions even if 

they have been performed frequently. In 

contrast, transition probabilities generalize 

across sequences predicting that the frequency 

of the transition will benefit speed whenever the 

transition occurs. 

Methods 
To determine the contribution of the two 

processes to motor learning, we used the 

discrete sequence production task (DSP). We 

were able to estimate the influence of first and 

second order transitions and chunking on 

participants’ performance throughout 3 weeks 

 

Figure 1. IPI performance predictions based 

on the chunking and transition model on an 

example sequence. 

. 



of training. Participants practiced sequences of 

numbers on a keyboard-like device over a 3-

week period with the goal to continuously 

improve execution speed. The first group of 

participants (N=32) first practiced small 2-3 

digit chunks and then learned seven 11-press 

sequences, each of which consisted of four of 

the pre-trained chunks. This led to a clear 

chunking structure across participants at the 

beginning of training which enabled us to 

examine chunking without using the resulting 

data to predict it. We measured the inter-press 

time intervals (IPIs) between the keypresses. 

The frequency of 1st and 2nd order transitions 

were calculated for each day. We then 

estimated how well a combination model of 1st 

and 2nd order transitions, a chunk model and the 

combination of both predicted participants’ 

IPIs. The data was divided into the three weeks 

of training to examine any changes that could 

occur with training. We used a cross-validated 

ordinary linear regression approach to estimate 

the R2 between even and odd blocks of trials for 

each participant and each day separately (across 

sequences). A noise ceiling was determined 

through the correlation of the inter-press 

intervals between even and odd blocks of trials. 

The cut-off value for significance was corrected 

for the number of comparisons made within 

each training phase (0.05/3 = 0.0167). 

Results 
Comparing the two models and their 

combination we found that in the first week of 

training the chunking model predicted 

significantly more variability than the 1st+2nd 

order transition model (t(31) = 8.653, p = 9.002e-

10; Fig. 2). The combination of chunk and 

transition model did not predict significantly 

more variability than the chunk model (t(31) = -

2.380, p = 0.024), suggesting that the transition 

model does not predict any variability beyond 

what the chunk model already accounts for.  

While chunking still explained more variance 

than the transition model (t(31) = 3.135, p = 

0.004) in the last week of training, combining 

the models led to significantly higher R2 value 

(t(31) = 4.834, p = 3.460e-05). Overall, these 

findings suggest that the formation of chunks 

primarily influences transition speed 

throughout training and transition probabilities 

add to performance after the initial learning 

phase. Hence, chunking seems to play a greater 

role in the discrete sequence production task 

than the statistical learning of transition 

probabilities. 
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Figure 2. Chunk and transition model 

comparison. Cross-validated R2 values for the 

transition and the chunk model and their 

combination. Asterisk indicates significant 

difference at a significance level of 0.0167. 

Error-bars represent the standard-error 

between subjects. 



Health and Human Development Grant (R01 

HD075740) to P.G 

References 
Acuna, D. E., Wymbs, N. F., Reynolds, C. A., 

Picard, N., Turner, R. S., Strick, P. L., … 

Kording, K. P. (2014). Multifaceted aspects 

of chunking enable robust algorithms. 

Journal of Neurophysiology, 112(8), 1849–

1856. https://doi.org/10.1152/jn.00028.2014 

Beukema, P., & Verstynen, T. (2018). 

Predicting and binding: interacting 

algorithms supporting the consolidation of 

sequential motor skills. Current Opinion in 

Behavioral Sciences, 20, 98–103. 

https://doi.org/10.1016/j.cobeha.2017.11.014 

Boucher, L., & Dienes, Z. (2003). Two ways 

of learning associations. Cognitive Science, 

27(6), 807–842. 

https://doi.org/10.1016/j.cogsci.2003.03.001 

Du, Y., & Clark, J. E. (2017). New insights 

into statistical learning and chunk learning in 

implicit sequence acquisition. Psychonomic 

Bulletin & Review, 24(4), 1225–1233. 

https://doi.org/10.3758/s13423-016-1193-4 

Meulemans, T., & Van Der Linden, M. (2003). 

Implicit learning of complex information in 

amnesia. Brain and Cognition, 52(2), 250–

257. https://doi.org/10.1016/S0278-

2626(03)00081-2 

Miller, G. A. (1956). The magical number 

seven, plus or minus two: some limits on our 

capacity for processing information. 

Psychological Review, 63(2), 81–97. 

https://doi.org/10.1037/h0043158 

Nissen, M. J., & Bullemer, P. (1987). 

Attentional requirements of learning: 

Evidence from performance measures. 

Cognitive Psychology, 19(1), 1–32. 

https://doi.org/10.1016/0010-

0285(87)90002-8 

Perruchet, P., & Pacton, S. (2006). Implicit 

learning and statistical learning: one 

phenomenon, two approaches. Trends in 

Cognitive Sciences, 10(5), 233–238. 

https://doi.org/10.1016/j.tics.2006.03.006 

Perruchet, P., & Vinter, A. (1998). PARSER: 

A Model for Word Segmentation. Journal of 

Memory and Language, 39(2), 246–263. 

https://doi.org/10.1006/jmla.1998.2576 

Ramkumar, P., Acuna, D. E., Berniker, M., 

Grafton, S. T., Turner, R. S., & Kording, K. 

P. (2016). Chunking as the result of an 

efficiency computation trade-off. Nature 

Communications, 7, 12176. 

https://doi.org/10.1038/ncomms12176 

Servan-Schreiber, E., & Anderson, J. R. 

(1990). Learning artificial grammars with 

competitive chunking. Journal of 

Experimental Psychology: Learning, 

Memory, and Cognition, 16(4), 592–608. 

https://doi.org/10.1037/0278-7393.16.4.592 

Verwey, W. B., & Dronkert, Y. (1996). 

Practicing a Structured Continuous Key-

Pressing Task: Motor Chunking or Rhythm 

Consolidation? Journal of Motor Behavior, 

28(1), 71–79. 

https://doi.org/10.1080/00222895.1996.9941

735 

 


		2018-08-20T14:49:43-0500
	Preflight Ticket Signature




