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Abstract

Scale-invariant timing has been observed in a wide range
of behavioral experiments. The firing properties of re-
cently described time cells provide a possible neural sub-
strate for scale-invariant behavior. Earlier neural circuit
models do not produce scale-invariant neural sequences.
In this paper we present a biologically detailed network
model based on an earlier mathematical algorithm. The
simulations incorporate exponentially decaying persis-
tent firing maintained by the calcium-activated nonspe-
cific (CAN) cationic current and a network structure given
by the inverse Laplace transform to generate time cells
with scale-invariant firing rates. This model provides
the first biologically detailed neural circuit for generat-
ing scale-invariant time cells. The circuit that imple-
ments the inverse Laplace transform merely consists of
off-center/on-surround receptive fields. Critically, rescal-
ing temporal sequences can be accomplished simply via
cortical gain control (changing the slope of the f-I curve).
Because of the generality of the Laplace transform and
the flexibility of this neural model, this neural architec-
ture could contribute to many neural computations over
functions.
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Introduction

Numerous behavioral experiments in human and other ani-
mals suggest that time is represented in the brain in a scale-
invariant fashion. Recent neurophysiological recordings of
time cells provide a possible neural substrate of this behavior
(Pastalkova, Itskov, Amarasingham, & Buzsaki, 2008; Mac-
Donald, Lepage, Eden, & Eichenbaum, 2011; Salz et al,,

2016; Tiganj, Kim, Jung, & Howard, 2017; Tiganj, Cromer,
Roy, Miller, & Howard, 2018). To account for scale-invariant
behavior, time cells should exhibit the scalar property: the
width of their firing fields should scale up linearly with the peak
time so that all neurons in the sequence have the same coeffi-
cient of variation (CV). While neural data are qualitatively con-
sistent with these properties, it is unclear how the brain could
construct scale-invariant time cells.

Chaining model breaks scale-invariance

We first rule out 1D chaining models where every synapse
is modeled as the same synaptic kernel (Goldman, 2009)
as a mechanism for scale-invariant temporal sequences. In
this model the neural activity of the i th neuron is g;(t) =
[ gi—1(t")K(t —1t")dt'. We notice that, up to a constant fac-
tor, g; is the probability distribution of the sum of two random
variables whose probability distributions are g;—; and K re-
spectively. If K has mean m and variance &, then by central
limit theorem, for large i, g; will have mean im and variance
V/io; the coefficient of variation (CV) scales as /i for different
neurons along the chain. Since the CV is not a constant, 1D
chaining models cannot generate scale-invariant sequences.
We instead propose a feedfoward network architecture that
implements an approximated inverse Laplace transform using
a set of leaky integrators with a spectrum of functional time
constants.

The network model

Our neural network model consists of three layers. The layer |
neurons have exponentially-decaying firing rates with long
time constants. This is achieved by the dynamics of the
calcium-nonspecific cationic (CAN) current (Tiganj, Hasselmo,



& Howard, 2015). The layer | neurons project to the layer I
neurons via NMDA synapses with uniform connectivity. The
layer 1l neurons and the output layer neurons are connected
via NMDA and GABA,, synapses with connectivity given by the
inverse Laplace transform, so that the firing rates for the out-
put layer neurons approximate T;(t) = %s"“ % where
fs(¢) is the firing rate of an layer | neuron indexed by its rate
constant s. This is the approximation of the inverse Laplace
transform proposed in (Post, 1930), where k indexes the ac-
curacy of the transform. The connectivity matrix W, is given

by discretizing the derivative in the previous equation, T(z) ~
_ 1)k

%sk” © D*(t) = W f(t), where © represents element-

wise multiplication, and sk*1 = [s¢T1 &+1 &7 when

As — 0, it can be shown that the connectivity matrix is sym-

metric and has an on-center, off-surround shape.

Simulation

Figure 1 shows the activity of the simulated time cells (the
output layer neurons). They fire sequentially, with timescales
of seconds to hundreds of seconds, and they have the same
form of firing rates when rescaled by peak times. These re-
sults are consistent with neural data.

In addtion, this network can readily produce the “time
rescaling” phenomenon, where the firing fields of time cells
are rescaled by the length of the delay interval (MacDonald
et al.,, 2011; Mello, Soares, & Paton, 2015; Wang, Narain,
Hosseini, & Jazayeri, 2018). In previous work based on reser-
voir computing frameworks, rescaling requires learning new
sets of weights (Hardy, Goudar, Romero-Sosa, & Buonomano,
2017; Goudar & Buonomano, 2017; Wang et al., 2018). On
the contrary in the current framework, rescaling of the neu-
ral sequence is achieved simply by cortical gain control, i.e.,
a global change in the slope of the f-I curves among all the
layer | neurons. Figure 2 shows the results of two simulations
where the speed of the sequence was rescaled by o0 = % and
o = 2 by changing the cortical gain of all the layer | neurons.

Indeed as shown in Figure 2a,b changing the slope of the
f-I curves changes the time constants of layer | neurons. Fig-
ure 2c¢ shows the firing rates of the same time cells before and
after the change in a.. Their firing fields appear rescaled by the
scaling factor é in accordance with observation (MacDonald
etal, 2011; Mello et al., 2015).

Figure 2b shows the peak times of 55 time cells before and
after rescaling. The linear relationship indicates that the time
cells indeed code relative time during an interval.

Discussion

Although we emphasize on the network’s ability to generate a
representation of time, the functional capability of the neural
circuit can be generalized in two important ways. First of all,
the rescaling mechanism mentioned above gives the neural
circuit the ability to compute Laplace transform over other vari-
ables. For example, if the rescaling factor above is controlled
by instantaneous velocity (i.e. a(z) = %), this neural circuit
computes the Laplace transform with respect to position and

is able to construct one-dimensional place cells (Howard et
al., 2014). Second, functions represented in the Laplace do-
main can be manipulated more easily. For example, by flexibly
modulating the weights in our neural circuit one can translate
the functions to simulate future (Shankar, Singh, & Howard,
2016).

This model motivates experiments to find persistent firing
neurons with a systematic broad spectrum of time constants
and when techniques are available for measuring connectivity
between functionally identified neurons, to test the predicted
pattern of connections between the persistent firing neurons
and time cells.
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Figure 1: a. A schematic drawing of the network. The direction of the “clock hand” indicates cells with different intrinsic
timescales. Triangle and circle refer to neurons with excitatory (NMDA) and inhibitory (GABAa) synapses, respectively b.Top:
postsynaptic firing rates for 5 simulated time cells;Bottom: Postsynaptic firing rates rescaled by peak times c¢. Left:Recording
data from monley IPFC during a delay match to category task (Tiganj et al., 2018) Right: The heatplot of simulated time cells.
Each row represents the firing rate of one time cell.
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Figure 2: a. Three f-I curves of the same layer | cells when
the delay interval is changed to half (blue), twice (red), and
the same as the original. This results in the rescaling of the
peak times of all the time cells. b. Red: peak times become
twice the original, blue: peak times become half the original.
Three straight lines indicate y = 0.5x(blue), y = x(black) and
y = 2x(red). c. Firing rates of 3 representative time cells under
different delay length. d. The firing rates of the same time cell
under different delay lengths coincide when the time axis is
rescaled according to the peak times . Color indicates the
same cell in (c), thick line: oo = 2, dotted line: oo = 1, thin line:
a=0.5)
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