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Abstract
How does the cognitive system know when and how
much cognitive control to allocate to which task? Accord-
ing to the Learned Value of Control (LVOC) model, people
learn to predict the value of cognitive control based on a
linear combination of stimulus features. This model pre-
dicts that what people learn about the value of control
in one situation should transfer to other situations with
shared features, leading to the intriguing prediction that
maltransfer can cause people to over-exert control even
when it harms their performance. To test this prediction,
we designed a novel color word Stroop task in which we
rewarded participants differentially for exerting cognitive
control (i.e. color naming) or for engaging the more au-
tomatic response (i.e. word reading) based on individ-
ual stimulus features. We test how participants learned
value of control transfers to novel stimuli that share fea-
tures with previously exposed stimuli and create a situa-
tion that should lead to maltransfer according to the LVOC
model. Empirical data from 30 participants confirmed this
prediction and supports the conclusion that maltransfer
in learning about the value of control can mislead peo-
ple to overexert cognitive control even when it hurts their
performance.
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Introduction
Cognitive control is the ability to bias the processing of stim-
uli in accordance with current task goals. Every day we en-
counter situations that require us to make appropriate deci-
sions about the allocation of cognitive control, such as reading
a paper instead of attending an incoming email notification.

Recent models have formalized control allocation as
the outcome of a rational cost-benefit analysis (Shenhav,
Botvinick, & Cohen, 2013; Shenhav et al., 2017; Kurzban,
Duckworth, Kable, & Myers, 2013; Lieder, Shenhav, Musslick,
& Griffiths, 2018). According to the expected value of con-
trol (EVC) theory the cognitive system selects the control sig-
nal that maximizes the difference between it’s expected payoff
and a cost based on how much control would be used (con-
trol signal intensity). Computational realizations of the EVC
theory replicate interactions between motivation and cognitive
control as observed in human behavior (Musslick, Shenhav,
Botvinick, & Cohen, 2015), such as increases in people’s will-

ingness to allocate cognitive control when rewards are on of-
fer (Padmala & Pessoa, 2011). An extension of this theory by
Lieder et al. (2018) proposes a neurally plausible mechanism
to associate stimulus features with the value of allocating con-
trol. Their Learned Value of Control (LVOC) model predicts
transfer of knowledge about the value of allocating control to
new situations that share stimulus features.

The forms of transfer referred to above generally lead to
improved performance. However, the theory also predicts that
the learning of a high value of cognitive control can lead to
maltransfer from one setting to another in which allocating
cognitive control turns out to be harmful, or maladaptive. For
example, if people learn that it is beneficial to allocate control
to the task of navigating while driving, as well as to attend-
ing to a mobile device to encode a text message, then with-
out sufficient experience to the contrary they might reason-
ably (though regrettably) infer that it would be advantageous
to allocate control to both tasks in a setting where both are
available. Here, we test the predictions of the LVOC model
experimentally, and manipulate the association of stimuli with
the benefits of allocating control, to generate circumstances
in which the acquisition of such associations can lead to mal-
transfer. We focus on conditions in which such associations
favor the maladaptive allocation of control over an automatic
alternative that would have resulted in the better performance.

LVOC Model
According to the LVOC model, people learn to predict the EVC
of specifying the control signal c in situation s, EVC(s,c), from
the stimulus features associated with each control signal, f(c);

EVC(s,c)⇡ LVOC( f ,c;w) = Â
i

w( f⇥c)
i · fi · c� cost(c), (1)

where wi is the weight of the ith feature and cost(c) is the cost
of exerting the control signal. To illustrate this, consider the
Stroop task (Stroop, 1935), in which participants are shown a
series of color words (e.g. RED, GREEN, BLUE, etc.), and
asked either to read the word (WR) or name the color (CN) in
which it is displayed (e.g. respond to the incongruent stimu-
lus RED by saying “green”). To represent Stroop stimuli with
the colors red and green and the words RED and GREEN,
the features would include f1(c) = colorIsRed · c, f2(c) =
colorIsGreen · c, f3(c) = wordIsRed · c, f4(c) = wordIsGreen ·
c as well as the overall (global) value of exerting cognitive con-
trol in the context of the experiment f5(c)= c. Feature weights



w = (w1, · · · ,w5) are learned by Bayesian linear regression of
the experienced value of control R�cost(c) onto the features
f, where R is the reward experienced upon control allocation.
We applied this model to predict people’s accuracy and re-
action times in the novel Stroop experiment described below.
Following Musslick et al. (2015), our model translates control
signals into reaction times and error rates via a drift-diffusion
model with the drift rate:

d = c? · ycolor ·dcontrolled +(1� c?) · yword ·dautomatic, (2)

where ycolor,yword 2 {�1,1} are the responses associated
with the color or word respectively, and dcontrolled and dautomatic
are the drift rates of the automatic (WR) process and the con-
trolled (CN) process.

Experiment
We studied the maltransfer of cognitive control in a variant of
the Stroop task (Stroop, 1935) in which participants were ex-
clusively presented with incongruent stimuli for which the color
and word lead to different responses. It is assumed that nam-
ing the color of an incongruent Stroop stimulus requires the
allocation of control to overcome interference from an auto-
matic word reading process, leading to worse performance for
CN compared to WR (Cohen, Dunbar, & McClelland, 1990).

We divided the experiment into two phases: an initial
Mapping Phase in which participants learned the value of a
controlled response (CN) associated with individual stimulus
features (colors and words); and a second Transfer Phase,
in which participants were tested on novel combinations of
previously encountered stimulus features (see Figure 1).
We specifically examined how participant’s learned value
of allocating cognitive control in the Mapping Phase would
affect their decision to allocate cognitive control (CN) in the
Transfer Phase. We hypothesized that participants learn a
high value of exerting control (CN) for stimuli with features
that predict a reward for a CN response in the Mapping
Phase. For instance, rewarding the CN response for stimuli
that are composed of color green or the word RED should
lead participants to learn a high value of exerting control
(CN) whenever either feature is present. Critically, when both
features are combined to a new stimulus (RED) in the Transfer
Phase participants’ should be biased toward exerting cogni-
tive control, even though they have never encountered this
stimulus. We used eight colors and eight words. Half of each
(yellow/green/red/blue,YELLOW/GREEN/BLUE/BLUE)
were of experimental interest, and the other half
(white/orange/brown/pink, WHITE/ORANGE/BROWN/PINK)
were used as controls.
Mapping Phase. Participants were instructed1 that they
could either WR or CN. In two parts of the Mapping Phase
participants learned the response associations between the
features of interest and the CN or WR task. For example,
in Mapping Phase Part 1 every time the color yellow was

1Participants given given no prior information about which stimuli
features rewarded CN versus WR.

presented the correct response was WR (other colors of
interest were also mapped). In Mapping Phase Part 2, every
time the word YELLOW was presented the correct response
was CN (other words of interest were also mapped). A display
indicated whether they received or missed the reward of five
points for responding correctly. Each of the mapping phases
consisted of 160 trials.
Transfer Phase. The transfer phase consisted of six trial
types, each trial type is defined based on the response
assigned to them in Transfer Phase relative to response
assigned to their features in the Mapping Phase (see Figure
1). We examined participant’s propensity to allocate cognitive
control to new stimuli (combinations of words and colors) in
the Transfer Phase of the experiment. We composed new
stimuli out of features (colors and words) which had been
individually associated with a positive value of control (e.g,
the color green and the word RED) but were never shown
in conjunction in the Mapping Phase of the experiment.
Critically, WR was now the more highly rewarded response
for those stimuli. Note that the feature-response mapping
resembles that of an exclusive OR (XOR) operation: Each of
the two features was associated with color-naming. However,
their conjunction would now require participants to engage
the automatic response to read the word. We referred to
these trials as consistently-mapped neither trials and based
on the LVOC model predict maltransfer (increased errors and
response times) for these trials.
The five other trial types are as follows. First, we considered
consistently-mapped color trials for which two features of
interest are combined. CN is the correct response in the
Transfer Phase, and the color feature was mapped to CN in
the Mapping Phase. The word feature of consistently-mapped
color trials was mapped to WR, nonetheless CN is the
correct response in the Transfer Phase and participants must
learn this contingency. Similarly, for consistently-mapped
word trials, two features of interest were combined and CN
is the correct response. The word feature was mapped
to CN in the Mapping Phase where the color feature was
mapped to the WR response. These trials correspond to
the ‘OR’ rule in the XOR problem; when one feature that is
associated with CN is present, the correct response is to
CN. For consistently-mapped both trials, both features were
associated with WR in the Mapping Phase and WR was the
correct response in the Transfer Phase. We parametrically
manipulated the frequency of consistently-mapped color and
consistently-mapped word (collectively, consistently-mapped
color/word) trials and expected increased experience with
consistently-mapped color/word trials would increase mal-
transfer to consistently-mapped neither trials. In a between
subjects design we included 0%, 20%, and 50% consistently-
mapped color/word trial frequencies in the Transfer Phase.
We also included a set of control trial types in the Transfer
Phase to measure non-feature-based learning and to ensure
CN was rewarded equally often as WR. We refer to them
as control trial types because they do not share features



with, and should not be affected by the consistently-mapped
color/word trial frequency manipulation. We used novel
combinations of the control colors and words for the control
trial types. Control colors and words were used in the
Mapping Phases in combination with colors and words of
interest, and were equally often associated with the CN and
WR response during Mapping. For WR control trials, we
combined a subset of the control colors and control words
and the correct response was to WR. For CN control trials
we combined an different subset of the control colors and
control words and the correct response was to CN. WR
control trials were frequency matched to consistently-mapped
neither trials and served as a measure of non-feature-based
learning of the value of control as consistently-mapped
color/word trial frequency increased. CN control trials were
balanced against the frequency of consistently-mapped
color/word trials so that CN was the correct response for
half of all trials in the transfer phase in all frequency groups
(i.e., when consistently-mapped color/word trial frequency
was 20%, CN control trial frequency was 30%). We tested
30 participants (10 per frequency condition) at Princeton
University. Participants received bonus compensation for
points they earned.

Figure 1: Experiment Stimuli. Columns: which response is
rewarded. Rows: experiment phase.

Model fit to behavior
To directly compare the control signal output by the LVOC
model and human performance we performed a hierarchical
DDM fit to participants’ accuracy and reaction times in the
Transfer Phase (HDDM version 0.6.0 in Python 3.4; Wiecki,
Sofer, & Frank, 2013). We were particularly interested in the
rate of evidence accumulation, or drift rate, as an indicator for
the strength of processing of color or word relative to which re-
sponse was correct on each trial type. We fit the LVOC model
to the group-level estimates of the participants’ drift rates for
each trial type in each experimental condition. Free parame-
ters in the model were the prior distribution of the weights, and

the drift rates for the color-naming and word-reading process
(averaged across all participants). We found that the best fit-
ting parameters were (1.32,3.22,�0.17,0.11). Using these
best fitting parameters we simulated a 30 participant experi-
ment 100 times. Our dependent measure was the mean drift
rate applied on each trial type in the simulations.

Results
Behavior

Consistent with our predictions, there was a significant in-
crease in errors on consistently-mapped neither trials (CN re-
sponses) with increasing consistently-mapped color/word trial
frequency (b = 0.03276, p < 1.17e � 05). HDDM fits in-
dicated a significant decrease in drift rate towards the cor-
rect response (WR), and near reversal toward the incorrect
response, with increasing frequency of consistently-mapped
color/word, indicating decreased strength of processing of
the WR response (see Figure 2A; sample mean frequency
0% = 0.824 ± 0.130, frequency 20% = 0.316 ± 0.126, fre-
quency 50% = �0.099± 0.126). We found no change in re-
action time across consistently-mapped color/word frequency
groups. The fits did indicate a lower threshold for the 50%
frequency group compared to the 0% and 20% groups, sug-
gesting that shift in the speed-accuracy contributed at least in
part to the higher error rates in this group.
The only trial type for which human performance was not
aligned with the LVOC model predictions was WR control tri-
als. These trials, that appeared only in the Transfer Phase,
did not share features with consistently-mapped color/word
trials, and were associated with WR as the correct response.
If learning was feature-specific, we would not expect perfor-
mance on WR control trials to be influenced by the frequency
of consistently-mapped color/word trials. Contrary to this pre-
diction, errors on WR control trials increased with an increase
in the frequency of consistently-mapped color/word trials (b =
0.03465, p < 4.47e � 05). Correspondingly, drift rate to-
wards the correct response (WR) decreased as consistently-
mapped color/word trial frequency increased (see Figure 2A;
sample mean frequency 0% = 0.96± 0.13, frequency 20%
= 0.59± 0.12, frequency 50% = 0.22± 0.13). Linear mixed
effects modeling did not reveal any significant change in reac-
tion time across frequency groups.

Model fit and model comparison

We found that the model matched the drift rates estimated
directly from the data (see Figure 2) with the exception of
WR control trials. For those trials, the model did not cap-
ture the decrease in drift rate with increased frequency of
consistently-mapped color/word trials. This was likely be-
cause the model is driven largely by feature-based learning.
To determine that the complexity of the model was justified
by its fit to the data, we performed quantitative model com-
parisons against an alternative Win-Stay Lose-Shift (WSLS)
model that switched between CN and WR following errors and
repeated its choice following correct response. Our analyses



indicated that the LVOC model explained the data significantly
better than the simpler alternative model (BIC LVOC=4.5 vs.
BIC WSLS=707.8)
One possible explanation of the deterioration of people’s
performance on WR control trials with the frequency of
consistently-mapped color/word trials could be a difference
in how the global value of control is learned as compared to
the stimulus-specific weights. WR control performance would
suggest this learned global weight is larger in higher frequency
groups. Consistent with the idea that, with sparse data, people
learn the EVC for more general (i.e., shared) characteristics of
a task situation, and only with more training do they develop
dedicated (i.e., distinct or separated) representations of the
EVC for more specific features of the circumstance, we al-
lowed the global weight to be learned more rapidly than other
weights. We did so by increasing the prior precision of the
global weight which allows faster learning because there is
less uncertainty. Importantly, this mechanism is agnostic to
the direction in which the global weight should change. We
set the precision of the model’s prior on the weights of feature
and feature conjunctions (64.9) to be significantly less precise
than the prior on the global weight for control signal intensity
(21.13). We found that this manipulation allowed the model to
capture the pattern of performance in the WR control trials, as
well as all of the other effects previously exhibited.

Figure 2: A) Behavior fit drift rate. Drift rates are towards the
rewarded (correct) response for a trial type. B) Fit of LVOC
model to the drift rates of human subjects. LVC model cap-
tures qualitative effects in drift rates for all trial types except
WR control trials (yellow).

Discussion
We designed a novel Stroop task to test the hypothesis that
the value of control is learned and that this learning will
occur based on features present in the environment when
the outcome of allocating control is realized. Participants and
the LVOC model showed a significant propensity to choose
the control-demanding response (CN) for stimuli combining
features that were previously associated with higher reward
for the controlled response in the Mapping Phase, even when
there was greater reward for selecting the less demanding
response (WR) for that combination of features (consistently-
mapped neither trials) in the Transfer Phase. These findings

strongly suggest that people are attentive to and learn about
the value of allocating control, and generalize what they learn
to new circumstances. At the same time, the findings suggest
that people use relatively simple learning rules (in this case,
one that appears to be a linearly additive) that, at least in this
experiment, did not show sensitivity to non-linear associations
(i.e., the XOR rule used to determine the rewarded response
in the Transfer Phase). We also included trials that probed
non-feature based transfer of the value of control; surprisingly,
these also yielded evidence for the over-allocation of control.
Post-hoc modeling suggested that over-generalization of the
value of control may reflect a bias towards learning lower
dimensional representations of the value of control (i.e., the
predictive value of a situation irrespective of its features) early
in learning. Lastly, our results suggests that learning about
the value of control may be subject to maltransfer in situations
in which there is a non-linear relationship between the value
of control predicted for features present and the actual
value of control for the conjunction of those features; for ex-
ample, the value of driving and of attending to a mobile device.
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