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Abstract: 

Social interaction perception is a crucial part of the 
human visual experience that develops early in infancy 
and is shared with other primates. However, it remains 
largely unknown how humans compute information 
about others’ social interactions from visual input. Is 
social interaction detection a rapid perceptual process, 
or a slower post-perceptual inference? To answer this 
question, we used magnetoencephalography (MEG) 
decoding and computational modeling to ask how fast 
the human brain detects third-party social interactions. 
In particular, subjects in the MEG viewed snapshots of 
visually matched real-world scenes containing a pair of 
people who were either engaged in a social interaction 
or acting independently. We could read out the 
presence versus absence of a social interaction from 
subjects’ MEG data extremely quickly, as early as 150 
ms after stimulus onset. We next showed that late, but 
not early, layers of a purely feedforward convolutional 
neural network (CNN) model could detect social 
interactions in the same images and contained 
representations that matched those in the MEG data. 
Taken together, these results suggest that 
the detection of social interactions is a 
rapid feedforward perceptual process, rather than a 
slow post-perceptual inference. 
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Introduction 

Humans are extremely skilled at recognizing social 
interactions. This ability develops early in infancy 
(Hamlin, Wynn, and Bloom 2007) and is shared with 
other primates (Sliwa and Freiwald 2017). We recently 
identified a region of the human posterior superior 
temporal sulcus (pSTS) that is selectively engaged 
when people view third-party social interactions (Isik et 
al. 2017; Walbrin, Downing, and Koldewyn 2017). 
These findings underscore the importance of 

perceiving social interactions, but leave unanswered 
the question of how quickly and automatically it 
occurs. Here we ask if and when we can read out 
information about others’ social interactions from MEG 
data, and if these neural representations are well 
modeled by a feedforward convolutional neural 
network.  

Results 

Experiment 

Eleven subjects viewed snapshots of visually matched 
real-world scenes containing a pair of people who 
were either engaged in a social interaction or acting 
independently (Figure 1) in the MEG. These images 
were captured across 13 different scene/actor pairings 
to provide visual variability across the images. 
Subjects viewed each image 25 times. To separate 
decoding from task demands, subjects performed an 
orthogonal task: reporting if the pair of people were the 
same or different gender.  

 

Figure 1: Social interaction dataset depicting pairs of 
individuals either engaged in a social interaction (left) 
or acting independently (right). Dataset contained 13 
different actor and scene combinations (three shown). 



Rapid readout of social interactions 

We used MEG decoding to ask if and when we could 
read out properties of the images. We trained and 
tested a linear correlation coefficient classifier on each 
subject’s MEG data at each 25 ms non-overlapping 
time bin, following the pre-processing and decoding 
methods used in (Isik et al. 2014).  
  
As expected, we could read out image identity (52-way 
image decoding, training on 80% of the data and 
testing on    20% held out data) as early as 75 ms after 
image onset, peaking at 125 ms (Figure 2a). This 
finding is consistent with previous reports of image 
decoding (Carlson et al. 2013; Cichy, Pantazis, and 
Oliva 2014; Isik et al. 2014) 
 
Our key finding is that we could read out whether the 
subject was viewing an image depicting the presence 
vs. absence of a social interaction within 150 ms of 
image onset, and the decoding accuracy peaked at 
200 ms (Figure 2b). This latency is similar to those of 
previously reported visual processes that are thought 
to be primarily feedforward, such as invariant object 
recognition (Isik et al., 2014). While early, this 
decoding is likely not based on very low-level visual 
features. It is substantially later than the low-level 
image identity decoding and importantly, social 
interactions in our dataset cannot be decoded based 
on low-level image information such as pixels or the 
output of a V1-like model (Figure 3b).  
 

Social interaction decoding generalizes 

To further un-confound the social interaction decoding 
from low-level image properties, we asked if the neural 
representations for social interaction generalizes 
across our different image scenarios. We trained a 
classifier on 11 of the 13 scenarios in our dataset 
(each row of Figure 1 depicts a separate scenario), 
and tested the classifier with data from the two held-
out scenes. Although the overall accuracy is lower, we 
can still decode whether or not the subject viewed a 
social interaction with the same onset and peak 
latencies reported above (Figure 2c).  

Detecting social interactions with a 
feedforward CNN 

The rapid nature of our MEG decoding suggests that 
computations are carried out in a primarily feedforward 
manner. We therefore asked whether a purely 
feedforward convolutional neural network (CNN) model 

Figure 2: Decoding image identity (a), presence 
vs. absence of a social interaction (b), and 
presence vs. absence of social interaction, 
generalizing across different scenes (c). Black 
bars at bottom of plots indicate when decoding is 
p<0.05 significant based on a permutation test, 
cluster corrected to show significant time periods 
of at least 50 ms. 



could identify images depicting the presence or 
absence of a social interaction. Specifically, we used a 
version of VGG-16 pre-trained on the ImageNet object 
classification challenge (Simonyan and Zisserman 
2014). We trained a linear classifier using the output of 
each network layer as features to a linear SVM using 
the same train/test scheme as the above MEG 
decoding. 

 

We could detect the presence of a social interaction 
using the network’s final pooling layer, but none of the 
earlier layers (Figure 3a). This finding reinforces our 
conclusion that low-level image features cannot be 
used to detect social interactions in our dataset, but 
shows that later layers of a feedforward network can 
do so. We observe a drop off in accuracy in the final 
fully connected layers, likely due to the fact that these 
layers have been over-trained on an object recognition 
task.  
 
While the CNN can classify presence vs. absence of a 
social interaction with above chance accuracy, this 
accuracy is substantially lower than a binary object 
categorization task that the network was trained on 
(e.g., cat versus dog). This finding suggests that 
detection of social interactions would be more efficient 
with templates specialized for this role, beyond those 
used for generic object recognition. Consistent with 
this idea, our prior neuroimaging results have identified 
a specialized cortical region for social interaction 
perception (Isik et al. 2017; Walbrin, Downing, and 
Koldewyn 2017). 
 

Matching representations in CNN and MEG 

We can further compare the representations in each 
model layer to our MEG data using representational 
similarity analysis (Kriegeskorte, Mur, and Bandettini 
2008). We compute a dissimilarity matrix based on the 
pairwise distance between all images for each layer of 
our CNN as well as for our MEG data. In order to 
account for the high correlation between the different 
CNN layers, we compute the partial correlation 
between each CNN layer and the MEG data, factoring 
out the contribution from all other layers. We find that 
the representation in the last pooling layer not only 
discriminates the presence of an interaction, but also 
matches the MEG data at later time points when social 
interaction information is decodable (Figure 3c). Earlier 
CNN layers, on the other hand, match the MEG data at 
earlier time points when lower-level image identity is 
decodable. These CNN results suggest that social 
interactions can be identified based on a feedforward 
model and this model’s representation matches that 
observed in our MEG data. 

Conclusions 

We report a rapid, spontaneous readout of the 
presence of social interactions from human MEG data. 
The latency of social interaction detection is similar to 
that observed for other primarily feedforward 

Figure 3: VGG-16 network architecture from 
(Simonyan and Zisserman 2014) (a), 
Classification accuracy of the presence vs. 
absence of social interactions based on each 
layer’s output (b), Partial correlation between 
the MEG data and the first and last pooling 
layer of the CNN (c). 



processes, such as object recognition. These neural 
representations for social interactions generalize 
across different images and scenes, and are well 
matched by the last pooling layer of a feedforward 
CNN. Taken together, these results suggest that 
human brain can rapidly detect social interactions 
based on perceptual cues.   
 
These results do not, however, indicate that all social 
interaction information is computed in a fast, 
feedforward manner. Social interaction perception has 
both challenges that are shared with other visual 
recognition problems, such as occlusion, as well as 
unique challenges, such as incorporating information 
about agents’ goals and values, which likely require 
additional top-down or cognitive inputs. Our results 
suggest that like other vision problems, such as object 
and scene perception, social interaction recognition 
has a fast, perceptual component that may serve as 
input to later top-down and cognitive processing. 
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