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Abstract 

The ability to orient and respond swiftly to our surroundings 
requires the detection and identification of sounds within 
moments. Broad descriptors of sounds, such as living and 
non-living objects, can be discriminated from neural activity 
starting within the first 100ms of perception, yet when are 
distinct sound categories (e.g., animals) and individual 
sounds (e.g., goat) represented and distinguished within the 
brain across time? To investigate this question, we use 
magnetoencephalography (MEG) and multivariate analyses 
of neural activity to examine the time course of audition 
across individual sounds (e.g., goat) and sound categories 
(animals, objects, people, spaces). Our results reveal a 
striking early signal for sound selectivity starting within 
80ms after stimulus onset for both individual sounds and 
sound categories. Sound categories showed a more diffuse 
generalization across time. Notably, human voices were 
especially pronounced and distinctive compared with other 
sound categories. These results illuminate the rapid and 
parallel emergence of sound identity and category 
information in the brain, and provide critical evidence that 
these representations dynamically evolve across time in 
distinct ways. 
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analysis 

 

Introduction 
From social cues to environmental threats, the ability to 
rapidly detect and identify sounds in our environment is 
critical for efficiently reacting to our surroundings (Teng et 

al., 2017). Using electroencephalography (EEG), several 
studies have found differential processing of environmental 
sound categories for broad category descriptors (living and 
non-living objects) of sounds beginning just 70ms after 
stimulus onset (Murray et al., 2006), and distinct processing 
for human and non-human sounds within 200ms (Capilla et 
al., 2013; Charest et al., 2009; Delucia et al., 2010). While 
these investigations have advanced our understanding of the 
speed of processing in the auditory system, there is still 
much to be uncovered. For instance, when are distinct sound 
categories (e.g., animals) and individual sounds (e.g., goat) 
represented and distinguished within the brain across time? 
In the current study, we investigate this question using 
magnetoencephalography (MEG) during an experimental 
task requiring individuals to listen to sound cues of various 
stimulus categories (animals, objects, people, spaces). To 
ensure identification of each sound, participants were asked 
to form a mental image based on preset descriptors.  
Multivariate analyses were then used to investigate the time 
course of audition by tracing the neural signature of auditory 
processing for individual sounds and sound categories.  

 

Methods and Results 

Stimulus Set 

Eighty diotic sounds from different semantic sources were 
selected from a set of 500 natural sounds and divided into 
four equal categories of twenty sounds each (animals, 
objects, people, spaces). Sounds were normalized by root 
mean square values and resampled to 44.1 kHz. Low-level 
auditory differences across categories were equated by 
statistically comparing the spectrograms of each sound 



category with random permutations. Each sound was 500ms 
in length, including 10ms linear rise and fall times. 

Training Procedure 

A training procedure was used to familiarize participants 
with all sounds. Each sound was accompanied with a 
written description, such as ‘a horse neighing’ (animal), ‘a 
trumpet playing’ (object), ‘a male shouting angrily’ 
(people), and ‘howling wind through a city’ (space). 

Experimental Paradigm 

Eight participants provided informed consent in accordance 
with guidelines of the MIT Committee on the Use of 
Humans as Experimental Subjects (COUHES). Participants 
completed the MEG experimental task in a dimly-lit room 
and were instructed to keep their eyes closed at all times to 
prevent artifacts caused by eye movements and blinks. All 
eighty sounds were randomly presented in each 
experimental run, and sounds were randomly interleaved 
with twenty null (no sound) trials and ten oddball (target 
detection) trials for a total run time of 330 seconds. Each 
sound trial (including oddball trials) consisted of a 500ms 
sound followed by 2500ms of silence which preceded the 
next trial (Figure 1). Participants completed 16 
experimental runs each. Each run was initiated with a button 
press, and participants responded to oddball sound detection 
trials using the same button press. 

 

 

 

 

 

 

 

 

 

 

MEG Acquisition and Preprocessing 

Brainstorm software was used to extract trials from 400ms 
before to 3000ms after target sound onset and preprocess the 
data. The baseline mean of each sensor was removed and 
data was smoothed by a low-pass filter of 30Hz. 

Statistical Inference     

We used nonparametric statistical tests which do not assume 
any distributions on the data. Our statistical inference on 
decoding time series were performed by permutation-based 
cluster-size inference (1000 permutations, 0.05 cluster 
definition threshold and 0.05 cluster threshold) with null 
hypothesis of 50% chance level.  

MEG Multivariate Pattern Analysis 

MEG data was analyzed using multivariate pattern analysis 
with multivariate noise normalization (Guggenmos et al., 
2018). To decode information of the target stimuli, a linear 
support vector machine (SVM, libsvm implementation) was 
used as a classifier. In order to reduce computational load, 
MEG trials of each condition were sub-averaged in groups 
of 4 with random assignment, resulting in N = 4 pattern 
vectors per condition. At each time point t of each trial, the 
MEG data was arranged in a vector of 306 elements. For 
each pair of sounds and at each time point, the accuracy of 
SVM classifier was calculated using a leave-one-out 
procedure. The procedure of sub-averaging and then cross-
validation was repeated 100 times. The classifier accuracies 
were averaged over the repetitions separately for sound 
pairs. Figure 2A shows the decoding time series averaged 
over pairwise decoding values for all sound categories. 
Decoding accuracy onsets for both categories and individual 
sounds occurred at 76ms. Figure 2B shows a 80 x 80 
representational dissimilarity matrix (RDM) displaying peak 
MEG decoding at the individual sound level. Pairwise 
comparisons across categories revealed significant decoding 
for all categories. Interestingly, higher decoding accuracy 
was found for human voices compared with other 
categories. 

Visualization with Multidimensional Scaling 

To reveal any underlying patterns from MEG decoding 
matrices, we used multidimensional scaling (MDS) to plot 
the data into a two-dimensional space such that similar 
conditions were grouped together and dissimilar conditions 
far apart. The resulting visualization can be seen in Figure 
2C.  

Temporal Generalization with Multivariate Pattern 
Analysis 

To compare the stability of neural dynamics of sounds, we 
studied the temporal generalization of their representations 

by extending the SVM classification procedure (King and 
Dehaene, 2014). The SVM classifier trained at a given time 
point t was tested on data at all other time points. The 
classifier performance in discriminating signals can be 

Figure 1. Experimental paradigm. Participants were 
instructed to form a mental image for each sound 
presented (above), and press a button when an oddball 
sound was detected (below). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

generalized to time points with shared representations. This 
temporal generalization analysis was performed on every 
pair of images and for each subject. Averaging within 
sounds and across subjects resulted in a 2D matrix where 
the x-axis corresponded to training time and y-axis to testing 
time. The resulting matrices (Figure 3), in which each row 
corresponds to the time (in ms) at which the classifier was 
trained and each column to the time at which it was tested, 
reveal a diagonally extended sequence of decoding patterns 
starting at ~80ms.  

 

 

 

 

 

 

 

The temporal generalization analyses differed between 
category and individual sound representations. For the 
individual sound representations, a narrow cluster, closely  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

following the time diagonal, suggests a brief generalization 
to neighboring time points. At the category level, however,  
representations showed more diffused significant clusters 
across time, suggesting that the category representations are 
maintained consistently over time in the auditory processing 
stream. 

Visualization with Sensorwise Mapping 

Results from the temporal generalization analysis suggest a 
diffuse pattern of decoding across time for category level 
discriminations of sound. To characterize this distribution 
within the spatial domain, we conducted a sensorwise 
analysis of the MEG-response patterns. We generated 102 
decoding time courses, one for each sensor triplet location, 
visualized as sensor maps (Figure 4). Statistically 
significant decoding accuracies were determined via 
permutation analysis (sign permutation test with 1000 
samples, p < 0.05, corrected for FDR across sensor positions 
at each time point). This analysis revealed primarily 
bilateral temporal cortical areas contributing to decoding 
performance during peak-latency decoding (189ms), with 
decoding extending to bilateral fronto-temporal cortex over 
time. Sustained distributed activation was found post-
stimulus offset (500ms), and bilateral fronto-temporal 
activity extended past 1000ms post-stimulus onset. These 
results further confirm a stable cortical representation of 

Figure 3. Time course of decoding for sound categories 
and individual sounds.  

Figure 2. (A) Time course of image decoding at the category and individual sound level. Significance statistical tests are 
with permutations tests using cluster defining thresholds (p < 0.05) shown in black. (B) 80 x 80 representational 
dissimilarity matrix (RDM) displaying peak MEG decoding at the individual sound level (263ms). (C) MDS in two-
dimensional space at baseline (0ms), peak-latency at the category level (189ms), and peak-latency at the individual sound 
level (263ms).  



sound category over time, and this extended processing 
should be explored in future investigations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

Our results provide critical insights into the temporal 
dynamics underlying auditory processing in the human 
brain. Notably, we observed a remarkably rapid early signal 
for both category distinctions and individual sound 
discriminations starting within the first 80ms of perception, 
and this signal was sustained even after stimulus offset. 
Such swift discriminations reflect the ability to recognize 
and respond to sounds in our environment in mere moments. 
Sound categories showed a more diffuse and sustained 

generalization across time, suggesting distinct temporal 
processing for categories and individual sounds. 
Representations of human voices were especially 
distinctive. These results elucidate the differential temporal 
dynamics for representations of individual sounds and 
sound categories. A finer understanding of these neural 
mechanisms provides insights on the cortical 
representational hierarchy of auditory categorization and 
thus add temporal computational constraints for modeling 
human auditory behavior (Aytar et al. 2016; Kell et al. 
2018). 
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Figure 4. Sensorwise decoding of sound categories for 
selected time points. Significant decoding is indicated 
with a black circle over the sensor position (p < 0.05; 
corrected for false discovery rate (FDR) across sensors 
and time) 
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