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Abstract: 

Voxel-wise modeling (VM) is a powerful tool that is used 
to estimate responses of individual voxels evoked by 
features of complex natural stimuli. Still, VM discards 
spatial correlations across functional selectivities of 
neighboring voxels, and this can lead to decreased 
sensitivity during model estimation with noisy 
measurements. Here, we describe a spatially-informed 
voxel-wise modeling (SPIN-VM) method that utilizes 
response correlations in spatial neighborhoods of 
voxels. SPIN-VM performs regularization both across 
spatial neighborhoods of voxels and across model 
features of individual voxels. We compared the 
performance of SPIN-VM to regular VM on a dataset 
collected from a natural listening experiment. Compared 
to VM, SPIN-VM leads to higher prediction performances 
and better capturing of local coherence of semantic 
representations with SPIN-VM.  
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Introduction 

In naturalistic fMRI experiments, voxel-wise modeling 
(VM) is a powerful tool that is used to assess cortical 
representations with improved sensitivity (Kay et al., 
2008). For fMRI experiments, the aim in VM is to 
estimate voxel-wise BOLD responses in terms of model 
features of naturalistic stimuli (Naselaris et al., 2011). 
VM uses regularization across the model weights to 
alleviate noise and ensure generalizability. Since VM 
models each voxel independently without any spatial 
smoothing, it increases sensitivity for detecting voxel-
wise functional selectivity (Dumoulin and Wandell, 
2008). Still, VM discards information from spatial 
correlations across model weights of neighboring 
voxels and this leads to decreased sensitivity with noisy 
measurements. 

Here, we describe a spatially informed voxel-wise 
modeling (SPIN-VM) method that better utilizes 

response correlations among neighboring voxels. To do 
that, we implement a weighted graph Laplacian that 
uses the distance between neighboring voxels 
(Grosenick et al., 2013; Penny et al., 2005). Like VM, 
SPIN-VM performs regularization across model 
features but with an additional regularization across 
spatial neighborhoods of voxel-wise model weights. 
SPIN-VM still maintains high sensitivity of detecting 
differences among functional selectivity of individual 
voxels since it still predicts BOLD responses in single 
voxels. To test whether SPIN-VM improves modeling 
performances, we implemented both methods on an 
fMRI dataset collected in a natural story listening 
experiment (Huth et al., 2016). In the experiment, we 
used a voxel-wise semantic model that estimates BOLD 
responses in terms of the semantic features of the 
stories. Regularized linear regression was used to fit 
voxel-wise models that optimally predict the measured 
BOLD responses in terms of the semantic features. 
Models obtained using VM and SPIN-VM were 
compared in terms of single-voxel prediction accuracy 
and smoothness of semantic maps. 

Methods 

MRI protocols 

MRI data were collected on a 3T Siemens Tim Trio 
scanner at the University of California, Berkeley using a 
32-channel head coil. Gradient EPI sequence was used 
with repetition time = 2.00 s, echo time = 33 ms, flip 
angle = 70o, voxel size = 2.24 x 2.24 x 4.13 mm3, slice 
thickness = 3.5 mm with 18% slice gap, field of view = 
224 x 224 mm2 and 32 axial slices to cover the entire 
cortex. Anatomical data were collected using T1-
weighted multi-echo MP-RAGE sequence with voxel 
size = 1 x 1 x 1 mm3 and field of view = 256 x 212 x 256 
mm3. 



Experimental procedures 

Subjects listened to naturally spoken stories that were 
selected from The Moth Radio Hour which covers a 
wide range of topics. In each story, a single speaker 
tells a memoir to a live audience. Whole-brain blood-
oxygen-level-dependent (BOLD) responses were 
recorded via functional magnetic resonance imaging 
(fMRI) from five human subjects during listening. 
However, in this paper, we compared VM and SPIN-VM 
performances for a single subject. 

ROI abbreviations 

Regions of interest (ROIs) used in this paper were: 
Auditory cortex (AC), Broca’s area (Broca), Wernicke’s 
area (WER), angular gyrus (AngG), supramarginal 
gyrus (SupMG), frontal operculum (FO), intraparietal 
sulcus (IPS), frontal eye fields (FEF), 
superior/middle/inferior frontal gyri (SFG, MFG, IFG), 
and retinotopic early visual areas (RET: V1-V4). 

Semantic model construction 

To estimate semantic tuning of single voxels, we 
constructed a semantic model that explains BOLD 
responses in terms of the semantic features of the story 
stimuli. To extract semantic features, a word 
embedding space was formed based on word co-
occurrence statistics. In this space, co-occurrences of a 
word with 985 basic words were taken as the features 
of that word (Huth et al., 2016). The assumption here is 
that words with similar meaning tend to occur in nearby 
positions in text. We then projected each word in the 
stories onto this space. This procedure yielded a 
stimulus matrix of 985 x number of TRs. Additionally, to 
rule out possible biases due to correlations between 
semantic features and word-rate, phoneme rate, and 
phoneme types, we included these features as 
nuisance regressors in our semantic model. 

Voxel-wise model estimation and validation 

We fit voxel-wise models between the stimulus matrix 
and BOLD responses using L2-regularized ridge 
regression. We performed model fitting and 
performance evaluations via a nested cross-validation 
procedure. The regularization parameters were 
determined in inner folds and prediction performances 
were calculated by using the selected parameters in 
outer folds. Separate models were fit for 10 different 
parameters in the range 103 to 108 (spaced 
logarithmically). We calculated prediction scores as the 
Pearson’s correlation between measured and predicted 
BOLD responses. 

Construction of the semantic space 

To visualize semantic tuning of cortical voxels, we 
implemented principal component analysis (PCA) on 
the tuning vectors obtained from the listening task. We 
selected the first three PCs that captured 32.25 ± 2.33% 
(mean ± s.d. across subjects) of the variance in tuning 
vectors. We then projected voxel-wise tuning vectors 
onto three PCs and assigned RGB colors to the voxels 
according to those projections. We then visualized 
semantic tuning of cortical voxels on flat maps. 

Results 

We have obtained voxel-wise prediction performances 
and semantic maps for VM and SPIN-VM, separately. 
In Fig. 1, the prediction performances of the two 
methods across important ROIs are shown. Except for 
RET, prediction performances significantly increase in 
all ROIs (Wilcoxon signed-rank test, P < 0.05). In Fig. 
2, we see that semantic maps for VM have patchy 
regions across many auditory and attention control 
areas. However, for SPIN-VM, the resulting semantic 
maps are smoother. SPIN-VM also presents semantic 
maps that are locally more coherent. Especially 
auditory areas (AC, Broca, WER) and attention-control 
areas (FEF, IPS) have relatively smoother semantic 
maps in SPIN-VM compared to VM. These results 
indicate that SPIN-VM increases prediction 
performance and better captures locally coherent 
semantic maps. 

 

Figure 1: Comparison of prediction performances of VM 
and SPIN-VM across important regions of interest 
(ROIs). Except for RET, prediction performances 
increase significantly in all ROIs (Wilcoxon signed-rank 
test, P < 0.05). 
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